On lines missing polyhedral sets in 3-space

We <?Pub Caret>study some combinatorial and algorithmic problems onsets of lines and polyhedral objects in 3-space. Our main resultsinclude: <list><item>(1) An <inline-equation><f>O<fen lp="par">n<sup>3</sup>2<sup>c<rad><rcd><rf>log</rf>n</rcd></rad></sup><rp post="par"></fen></f></inline-equation> upper bound on the worst case complexity of the setof lines missing a star-shaped compact polyhedron with<?Pub Fmt italic>n<?Pub Fmt /italic> edges. </item><item>(2) Given a star-shaped compact polyhedron P with<?Pub Fmt italic>n<?Pub Fmt /italic> edges we can compute on-line the<?Pub Fmt italic>shadow<?Pub Fmt /italic> of P from a query direction<?Pub Fmt italic>v<?Pub Fmt /italic> in almost-optimal output-sensitivetime <?Pub Fmt italic>O(k log<supscrpt>4</supscrpt>n)<?Pub Fmt /italic>, where <?Pub Fmt italic>k<?Pub Fmt /italic> is thesize of the shadow. The storage used by the data structure is<?Pub Fmt italic>O(n<supscrpt>3+ε</supscrpt><?Pub Fmt /italic>. </item><item>(3) An <inline-equation><f>O<fen lp="par">n<sup>3</sup>2<sup>c<rad><rcd><rf>log</rf>n</rcd></rad></sup><rp post="par"></fen></f></inline-equation> upper bound on the worst case complexity of the setof lines that can be moved to infinity without intersecting a set of<?Pub Fmt italic>n<?Pub Fmt /italic> given lines. This bound is almosttight. </item><item>(4) An<?Pub Fmt italic>O(n<supscrpt>1.5+ε</supscrpt>)<?Pub Fmt /italic>randomized expected time algorithm that tests the separation property:there exists a direction <?Pub Fmt italic>v<?Pub Fmt /italic> alongwhich a set of <?Pub Fmt italic>n<?Pub Fmt /italic> red lines can betranslated away from a set of <?Pub Fmt italic>n<?Pub Fmt /italic> bluelines without collisions? </item><item>(5) Computing the intersection of two polyhedral terrains in3-space with <?Pub Fmt italic>n<?Pub Fmt /italic> edges in time<?Pub Fmt italic>O(n<supscrpt>4/3+ε</supscrpt> +k<supscrpt>1/3</supscrpt>n<supscrpt>1+ε</supscrpt> + klog<supscrpt>2</supscrpt> n)<?Pub Fmt /italic>, where <?Pub Fmt italic>k<?Pub Fmt /italic> is the size of the output, andε > 0 an arbitrary small but fixed constant. This algorithmimproves on the best previous result of Chazelle et al. [7] </item></list>The tools used to obtain these results include Plu¨ckercoordinates of lines, random sampling and polarity transformations in3-space.

[1]  Jirí Matousek Construction of epsilon nets , 1989, SCG '89.

[2]  Leonidas J. Guibas,et al.  On translating a set of rectangles , 1980, STOC '80.

[3]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[4]  John H. Reif,et al.  An efficient output-sensitive hidden surface removal algorithm and its parallelization , 1988, SCG '88.

[5]  Godfried T. Toussaint,et al.  Movable Separability of Sets , 1985 .

[6]  Roberto Tamassia,et al.  Efficient Spatial Point Location (Extended Abstract) , 1989, WADS.

[7]  Jirí Matousek,et al.  Cutting hyperplane arrangements , 1990, SCG '90.

[8]  Marco Pellegrini,et al.  Stabbing and ray shooting in 3 dimensional space , 1990, SCG '90.

[9]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1992, SCG '92.

[10]  Micha Sharir,et al.  On the sum of squares of cell complexities in hyperplane arrangements , 1991, SCG '91.

[11]  Jörg-Rüdiger Sack,et al.  Separating a Polyhedron by One Translation from a Set of Obstacles (Extended Abstract) , 1988, WG.

[12]  Marco Pellegrini,et al.  On Collision-Free Placements of Simplices and the Closest Pair of Lines in 3-Space , 1994, SIAM J. Comput..

[13]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[14]  Bernard Chazelle,et al.  The Complexity and Decidability of Separation , 1984, ICALP.

[15]  Leonidas J. Guibas,et al.  Lines in space-combinators, algorithms and applications , 1989, STOC '89.

[16]  Micha Sharir,et al.  New bounds for lower envelopes in three dimensions, with applications to visibility in terrains , 1993, SCG '93.

[17]  Balas K. Natarajan,et al.  On planning assemblies , 1988, SCG '88.

[18]  Marco Pellegrini,et al.  Incidence and nearest-neighbor problems for lines in 3-space , 1992, SCG '92.

[19]  Leonidas J. Guibas,et al.  The complexity and construction of many faces in arrangements of lines and of segments , 1990, Discret. Comput. Geom..

[20]  Micha Sharir,et al.  Applications of a New Space Partitioning Technique , 1991, WADS.

[21]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..

[22]  Otto Nurmi On translating a set of objects in 2- and 3-dimensional space , 1986, Comput. Vis. Graph. Image Process..

[23]  Jirí Matousek,et al.  Ray Shooting and Parametric Search , 1993, SIAM J. Comput..

[24]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[25]  A W Tucker,et al.  On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Dieter Kratsch,et al.  Graph-Theoretic Concepts in Computer Science , 1987, Lecture Notes in Computer Science.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Micha Sharir,et al.  Castles in the air revisited , 1992, SCG '92.

[29]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[30]  Jirí Matousek Construction of ɛ-nets , 1990, Discret. Comput. Geom..

[31]  Pankaj K. Agarwal On Stabbling Lines for Convex Polyhedra in 3D , 1994, Comput. Geom..

[32]  V. Rich Personal communication , 1989, Nature.

[33]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[34]  M. Pellegrini,et al.  Finding stabbing lines in 3-space , 1992, Discret. Comput. Geom..

[35]  Leonidas J. Guibas,et al.  Lines in space - combinatorics, algorithms and applications , 1989, Symposium on the Theory of Computing.

[36]  Micha Sharir,et al.  Separating two simple polygons by a sequence of translations , 2015, Discret. Comput. Geom..

[37]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1993, Discret. Comput. Geom..

[38]  J. Matoussek Reporting points in halfspaces , 1991, FOCS 1991.

[39]  Bernard Chazelle An optimal algorithm for intersecting three-dimensional convex polyhedra , 1989, 30th Annual Symposium on Foundations of Computer Science.

[40]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[41]  Marco Pellegrini On lines missing polyhedral sets in 3-space , 1994, Discret. Comput. Geom..

[42]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[43]  D. M. Y. Sommerville,et al.  Analytical geometry of three dimensions , 1934 .

[44]  Mark de Berg,et al.  Efficient ray shooting and hidden surface removal , 1991, SCG '91.

[45]  J. Stolfi Primitives for computational geometry , 1988 .

[46]  Micha Sharir,et al.  A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.