Rare-earth doped solid-state phosphor with temperature induced variable chromaticity

Abstract Temperature induced variable chromaticity lanthanide multidoped solid-state phosphors are presented. The phosphors are composed of ytterbium-sensitized multiple-doped (Tm, Er, Ho) PbGeO 3 –PbF 2 –CdF 2 glass excited at 1.064 µm. The temperature induced color variation exploits the heat enhanced effective absorption cross-section of the ytterbium sensitizer under quasi-resonance excitation. The temperature enhancement of the energy-transfer mechanism between the sensitizer and the appropriate active light emitter allows the selective intensity control of the RGB emissions due to distinct excitation routes. The suitable combination of active ions generated variable chromaticity light with CIE-1931 coordinates changing from CIE- X  = 0.283; Y  = 0.288 at 20 °C to CIE- X  = 0.349;Y = 0.412 at 190 °C, and CIE- X  = 0.285; Y  = 0.361 at 25 °C to CIE- X  = 0.367; Y  = 0.434 at 180 °C in Yb 3+ /Tm 3+ /Ho 3+ and Yb 3+ /Tm 3+ /Er 3+ samples, respectively.

[1]  Younes Messaddeq,et al.  Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm , 2000 .

[2]  L. A. Bueno,et al.  White light generation by frequency upconversion in Tm3+∕Ho3+∕Yb3+-codoped fluorolead germanate glass , 2007 .

[3]  Ping Huang,et al.  Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+ : β-YF3 nanocrystals , 2007 .

[4]  E. A. Gouveia,et al.  Thermally induced threefold upconversion emission enhancement in nonresonant excited Er3+/Yb3+-codoped chalcogenide glass , 1999 .

[5]  Ping Huang,et al.  Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission , 2008 .

[6]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[7]  J. S. Aitchison,et al.  All optical integrated upconversion fluorescence-based point temperature sensing system using Er3+-doped silica-on-silicon waveguides , 2002 .

[8]  S. Tasch,et al.  Red-green-blue emission of parahexaphenyl devices with color-converting media , 1997 .

[9]  Yang Yang,et al.  Pyramid-shaped pixels for full-color organic emissive displays , 2000 .

[10]  P. Schmidt,et al.  Inorganic Luminescent Materials: 100 Years of Research and Application , 2003 .

[11]  E. A. Gouveia,et al.  Efficient energy upconversion emission in Tm3+/Yb3+-codoped TeO2-based optical glasses excited at 1.064 μm , 2001 .

[12]  A. Gouveia-Neto,et al.  Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm , 2003 .

[13]  A. S. Gouveia-Neto,et al.  Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass , 1998 .

[14]  Daisuke Matsuura,et al.  Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals , 2002 .

[15]  A. Gouveia-Neto,et al.  Red, green, and blue upconversion luminescence in ytterbium-sensitized praseodymium-doped lead–cadmium–germanate glass , 2004 .

[16]  M. J. Weber,et al.  Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[17]  R. Macfarlane,et al.  A Three-Color, Solid-State, Three-Dimensional Display , 1996, Science.

[18]  F. Auzel Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions , 1976 .

[19]  T. Parker,et al.  A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter , 1997, IEEE Photonics Technology Letters.

[20]  E. A. Gouveia,et al.  Fourfold output power enhancement and threshold reduction through thermal effects in an Er(3+)/Yb(3+)-codoped optical fiber laser excited at 1.064 mum. , 1999, Optics letters.

[21]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[22]  M. J. Suscavage,et al.  Multiphonon relaxation and infrared‐to‐visible conversion of Er3+ and Yb3+ ions in barium‐thorium fluoride glass , 1987 .

[23]  Kenneth T. V. Grattan,et al.  Infrared fluorescence ‘‘decay‐time’’ temperature sensor , 1985 .

[24]  Glauco S. Maciel,et al.  Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor , 2004 .

[25]  Yasunori Saito,et al.  Simultaneous three primary color laser emissions from dye mixtures , 1990 .

[26]  S. Tao,et al.  An Active Core Fiber-Optic Temperature Sensor Using an Eu(III)-Doped Sol-Gel Silica Fiber as a Temperature Indicator , 2007, IEEE Sensors Journal.

[27]  Henry F. Taylor,et al.  High-performance fiber-optic temperature sensor using low-coherence interferometry. , 1997, Optics letters.

[28]  Y. Messaddeq,et al.  Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass , 2001 .