The Complexity of Symmetry-Breaking Formulas

Symmetry-breaking formulas for a constraint-satisfaction problem are satisfied by exactly one member (e.g., the lexicographic leader) from each set of “symmetrical points” in the search space. Thus, the incorporation of such formulas can accelerate the search for a solution without sacrificing satisfiability. We study the computational complexity of generating lex-leader formulas. We show, even for abelian symmetry groups, that the number of essential clauses in the “natural” lex-leader formula could be exponential. Furthermore, we show the intractability (NP-hardness) of finding any expression of lex-leadership without reordering the variables, even for elementary abelian groups with orbits of size 3. Nevertheless, using techniques of computational group theory, we describe a reordering relative to which we construct small lex-leader formulas for abelian groups.

[1]  Eugene M. Luks,et al.  Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.

[2]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[3]  渡辺 力,et al.  R.A. Mapleton: Theory of Charge Exchange, Wiley-Interscience, New York, 1972, x+284ページ, 23.5×16cm, $19.95 , 1973 .

[4]  Igor L. Markov,et al.  Efficient symmetry breaking for Boolean satisfiability , 2003, IEEE Transactions on Computers.

[5]  David Joslin,et al.  Exploiting Symmetry in Lifted CSPs , 1997, AAAI/IAAI.

[6]  J. Dixon,et al.  Permutation Groups , 1996 .

[7]  James Mackenzie Crawford A theoretical analysis of reasoning by symmetry in first-order logic (extended abstract) , 1992 .

[8]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[9]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[10]  H. N. Shapiro Introduction to the theory of numbers , 1983 .

[11]  D. Miklós Linear binary codes with intersection properties , 1984, Discret. Appl. Math..

[12]  Gyula O. H. Katona,et al.  Minimal 2-coverings of a finite affine space based on GF(2) , 1983 .

[13]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[14]  K. Engel Sperner Theory , 1996 .

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[17]  Reinhard Laue,et al.  Algorithms for group actions applied to graph generation , 1995, Groups and Computation.

[18]  Belaid Benhamou,et al.  Study of symmetry in Constraint Satisfaction Problems , 1994 .

[19]  Paul Walton Purdom,et al.  Backtrack Searching in the Presence of Symmetry , 1988, Nord. J. Comput..

[20]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[21]  L. Thiel,et al.  The Non-Existence of Finite Projective Planes of Order 10 , 1989, Canadian Journal of Mathematics.

[22]  Rolf Backofen,et al.  Excluding Symmetries in Constraint-Based Search , 1999, CP.