Response to Comment on "The Evolution of Modern Eukaryotic Phytoplankton"

Falkowski et al . ([ 1 ][1]) examined when, why, and how a diverse group of eukaryotic phytoplankton, which overwhelmingly contain red plastids, rose to ecological prominence in Mesozoic time and continue to dominate the contemporary oceans. Our analysis included the fossil record of thecate

[1]  J. Palmer,et al.  Comment on "The Evolution of Modern Eukaryotic Phytoplankton" , 2004, Science.

[2]  Tadashi Maruyama,et al.  Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. , 2004, Protist.

[3]  A. Knoll,et al.  Evolutionary Trajectories and Biogeochemical Impacts of Marine Eukaryotic Phytoplankton , 2004 .

[4]  M. Schweikert,et al.  First ultrastructural investigations of the consortium between a phototrophic eukaryotic endocytobiont and Podolampas bipes (Dinophyceae) , 2004 .

[5]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[6]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[7]  Tadashi Maruyama,et al.  An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. , 2003, Protist.

[8]  P. Keeling,et al.  Nucleus-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Indicates a Single Origin for Chromalveolate Plastids , 2003 .

[9]  B. Leander,et al.  Morphostasis in alveolate evolution. , 2003 .

[10]  Paul G. Falkowski,et al.  THE MESOZOIC RADIATION OF EUKARYOTIC ALGAE: THE PORTABLE PLASTID HYPOTHESIS 1 , 2003 .

[11]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Green,et al.  Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Bhattacharya,et al.  Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. , 2001, American journal of botany.

[14]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[15]  Charles F. Delwiche,et al.  Tracing the Thread of Plastid Diversity through the Tapestry of Life , 1999, The American Naturalist.

[16]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[17]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[18]  C. Delwiche,et al.  The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[19]  Debashish Bhattacharya,et al.  Algal Phylogeny and the Origin of Land Plants , 1998 .