Flux reconstruction and solution post-processing in mimetic finite difference methods

We present a post-processing technique for the mimetic finite difference solution of diffusion problems in mixed form. Our post-processing method yields a piecewise linear approximation of the scalar variable that is second-order accurate in the L2-norm on quite general polyhedral meshes, including non-convex and non-matching elements. The post-processing is based on the reconstruction of vector fields projected onto the mimetic space of vector variables. This technique is exact on constant vector fields and is shown to be independent of the mimetic scalar product choice if a local consistency condition is satisfied. The post-processing method is computationally inexpensive. Optimal performance is confirmed by numerical experiments.

[1]  Enrico Bertolazzi,et al.  Algorithm 817: P2MESH: generic object-oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers , 2002, TOMS.

[2]  Victor G. Ganzha,et al.  Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..

[3]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[4]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[5]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[6]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[7]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[8]  James M. Hyman,et al.  The convergence of mimetic discretization for rough grids , 2004 .

[9]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[10]  M. Shashkov,et al.  The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .

[11]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Hexahedral Meshes , 2001 .

[12]  M. Shashkov,et al.  Mimetic Finite Difference Methods for Diffusion Equations , 2002 .

[13]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[14]  E. Bertolazzi,et al.  A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .

[15]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..

[16]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[17]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .

[18]  Enrico Bertolazzi,et al.  ON VERTEX RECONSTRUCTIONS FOR CELL-CENTERED FINITE VOLUME APPROXIMATIONS OF 2D ANISOTROPIC DIFFUSION PROBLEMS , 2007 .

[19]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[20]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[21]  Mikhail Shashkov,et al.  Approximation of boundary conditions for mimetic finite-difference methods , 1998 .

[22]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[23]  M. Shashkov,et al.  Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .

[24]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[25]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[26]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[27]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[28]  J. M. Hyman,et al.  Mimetic Finite Difference Methods for Maxwell's Equations and the Equations of Magnetic Diffusion , 2001 .