Intermediate shadow maps for interactive many-light rendering

We present an efficient method for computing shadows for many light sources (e.g., 1024). Our work is based on the observation that conventional shadow mapping becomes redundant as the number of lights increases. First, we sample the scene with a constant number of depth images (e.g., 10), which we call intermediate shadow maps. Then the shadow map for each light is approximated by rendering triangles reconstructed from the intermediate shadow maps. The cost of rendering these triangles is much smaller than rendering the original geometry of a complex scene. The algorithm supports fully dynamic scenes. Our results show that our method can produce soft shadows comparable to those obtained by conventional shadow mapping for each light source or by ray tracing, but at a higher frame rate.

[1]  Hans-Peter Seidel,et al.  Interactive global illumination based on coherent surface shadow maps , 2008, Graphics Interface.

[2]  Daniel G. Aliaga,et al.  Fast high-resolution appearance editing using superimposed projections , 2012, TOGS.

[3]  Wojciech Matusik,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[4]  Hans-Peter Seidel,et al.  Real-time Indirect Illumination with Clustered Visibility , 2009, VMV.

[5]  Hans-Peter Seidel,et al.  DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering , 2022 .

[6]  Yung-Yu Chuang,et al.  VisibilityCluster: Average Directional Visibility for Many-Light Rendering. , 2013, IEEE transactions on visualization and computer graphics.

[7]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[8]  Liang Xiao,et al.  Inverse image warping without searching , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[9]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[10]  Chris Wyman,et al.  Interactive, Multiresolution Image‐Space Rendering for Dynamic Area Lighting , 2010, Comput. Graph. Forum.

[11]  Hujun Bao,et al.  A matrix sampling-and-recovery approach for many-lights rendering , 2015, ACM Trans. Graph..

[12]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..

[13]  Cem Yuksel,et al.  Dual scattering approximation for fast multiple scattering in hair , 2008, SIGGRAPH 2008.

[14]  Valerio Pascucci,et al.  Genus Oblivious Cross Parameterization: Robust Topological Management of Inter-Surface Maps , 2007 .

[15]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[16]  Voicu Popescu,et al.  The WarpEngine: an architecture for the post-polygonal age , 2000, SIGGRAPH.

[17]  Kun Zhou,et al.  GPU-based out-of-core many-lights rendering , 2013, ACM Trans. Graph..

[18]  Tamy Boubekeur,et al.  ManyLoDs: Parallel Many‐View Level‐of‐Detail Selection for Real‐Time Global Illumination , 2011, EGSR '11.

[19]  Philipp Slusallek,et al.  Combining global and local virtual lights for detailed glossy illumination , 2010, ACM Trans. Graph..

[20]  Jan Kautz,et al.  Interactive Illumination with Coherent Shadow Maps , 2007, Rendering Techniques.

[21]  Ulf Assarsson,et al.  Efficient virtual shadow maps for many lights , 2014, I3D.

[22]  Pierre Poulin,et al.  A Light Hierarchy for Fast Rendering of Scenes with Many Lights , 1998, Comput. Graph. Forum.

[23]  Tomas Akenine-Möller,et al.  Precomputed local radiance transfer for real-time lighting design , 2005, SIGGRAPH 2005.

[24]  Manuel Menezes de Oliveira Neto,et al.  Relief texture mapping , 2000, SIGGRAPH.

[25]  F. Pellacini,et al.  Fast, realistic lighting and material design using nonlinear cut approximation , 2008, SIGGRAPH 2008.

[26]  Ulf Assarsson,et al.  More Efficient Virtual Shadow Maps for Many Lights , 2015, IEEE Transactions on Visualization and Computer Graphics.

[27]  Ramesh Raskar,et al.  Specular reflection reduction with multi-flash imaging , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[28]  K. Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[29]  Rui Wang,et al.  Precomputed Visibility Cuts for Interactive Relighting with Dynamic BRDFs , 2007 .