Non-negative matrix factorization for polyphonic music transcription

We present a methodology for analyzing polyphonic musical passages comprised of notes that exhibit a harmonically fixed spectral profile (such as piano notes). Taking advantage of this unique note structure, we can model the audio content of the musical passage by a linear basis transform and use non-negative matrix decomposition methods to estimate the spectral profile and the temporal information of every note. This approach results in a very simple and compact system that is not knowledge-based, but rather learns notes by observation.