Coupled-Cluster Methods for Molecular Calculations

[1]  J. Noga,et al.  Fourth-order MB-RSPT calculations of the spectroscopic constants and potential energy curve of F2 , 1983 .

[2]  G. D. Purvis,et al.  Comparison of MBPT and coupled-cluster methods with full CI. Importance of triplet excitation and infinite summations☆ , 1983 .

[3]  Rodney J. Bartlett,et al.  SCF and localized orbitals in ethylene: MBPT/CC results and comparison with one-million configuration Cl☆ , 1983 .

[4]  J. Paldus,et al.  Applicability of non‐degenerate many‐body perturbation theory to quasidegenerate electronic states: A model study , 1983 .

[5]  C. E. Dykstra,et al.  The nature of hydrogen bonding in the NN–HF, OC–HF, and HCN–HF complexes , 1983 .

[6]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[7]  Ron Shepard,et al.  C2V Insertion pathway for BeH2: A test problem for the coupled‐cluster single and double excitation model , 1983 .

[8]  M. J. Boyle,et al.  Cluster analysis of the full configuration interaction wave functions of cyclic polyene models , 1982 .

[9]  V. Kvasnicka,et al.  Coupled-cluster approach in electronic structure theory of molecules , 1982 .

[10]  P. Wormer,et al.  Conjugate gradient method for the solution of linear equations: Application to molecular electronic structure calculations , 1982 .

[11]  Ajit Banerjee,et al.  Applications of multiconfigurational coupled‐cluster theory , 1982 .

[12]  C. E. Dykstra Exploiting the link between CI and the coupled cluster model. estimates for cluster energies and wavefunctions and a means for the rapid determination of CCD wavefunctions , 1982 .

[13]  H. Nakatsuji,et al.  Cluster expansion of the wavefunction. Satellite peaks of the inner-valence ionization of H2O studied by the SAC and SAC CI theories , 1982 .

[14]  P. Wormer,et al.  Relationship between configuration interaction and coupled cluster approaches , 1982 .

[15]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[16]  V. Kvasnicka Calculation of correlation energy by a coupled-cluster approach , 1982 .

[17]  K. Hirao,et al.  Cluster expansion of the wave function. Electron correlations in singlet and triplet excited states, ionized states, and electron attached states by SAC and SAC–CI theories† , 1981 .

[18]  B. G. Adams,et al.  Symmetry-adapted coupled-pair approach to the many-electron correlation problem. I.LS-adapted theory for closed-shell atoms , 1981 .

[19]  B. G. Adams,et al.  Symmetry-adapted coupled-pair approach to the many-electron correlation problem. III. Approximate coupled-pair approaches for the Be atom , 1981 .

[20]  B. G. Adams,et al.  Symmetry-adapted coupled-pair approach to the many-electron correlation problem. II. Application to the Be atom , 1981 .

[21]  A. Komar Relativistic action at a distance and quasiseparability , 1981 .

[22]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[23]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[24]  M. Robb,et al.  Size consistency in multi-reference double excitation CI calculations , 1981 .

[25]  Steven M. Bachrach,et al.  Application of an approximate double substitution coupled cluster (ACCD) method to the potential curves of CO and NeHe: Higher order correlation effects in chemically and weakly bonded molecules , 1981 .

[26]  Rodney J. Bartlett,et al.  The reduced linear equation method in coupled cluster theory. , 1981 .

[27]  R. Bartlett,et al.  Calculation of Dissociation Energies Using Many-Body Perturbation Theory , 1981 .

[28]  Clifford E. Dykstra,et al.  An efficient and accurate approximation to double substitution coupled cluster wavefunctions , 1981 .

[29]  D. Mukherjee A note on the lower-bound nature of the linearized CPMET , 1981 .

[30]  R. Bartlett,et al.  ELECTRON CORRELATION IN LARGE MOLECULES WITH MANY‐BODY METHODS , 1981 .

[31]  C. E. Dykstra,et al.  An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods , 1981 .

[32]  Nicholas C. Handy,et al.  Exact solution (within a double-zeta basis set) of the schrodinger electronic equation for water , 1981 .

[33]  B. Roos,et al.  MCSCF–CI calculations of the ground state potential curves of LiH, Li2, and F2 , 1981 .

[34]  Ajit Banerjee,et al.  The coupled‐cluster method with a multiconfiguration reference state , 1981 .

[35]  M. Frisch,et al.  A systematic study of the effect of triple substitutions on the electron correlation energy of small molecules , 1980 .

[36]  Stephen Wilson,et al.  Effect of basis-set completeness on the relative importance of triply and quadruply excited configurations in correlation energy calculations , 1980 .

[37]  Michael J. Frisch,et al.  Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory , 1980 .

[38]  U. Kaldor,et al.  Diagrammatic many-body perturbation theory for general model spaces , 1979 .

[39]  D. T. King Early cascade development of energetic electrons , 1979 .

[40]  R. Bartlett,et al.  The quartic force field of H2O determined by many‐body methods that include quadruple excitation effects , 1979 .

[41]  Josef Paldus,et al.  Orthogonally-spin-adapted coupled-cluster theory for closed-shell systems including triexcited clusters , 1979 .

[42]  L. T. Redmon,et al.  Accurate binding energies of diborane, borane carbonyl, and borazane determined by many-body perturbation theory , 1979 .

[43]  J. Cizek,et al.  Correlation problems in atomic and molecular systems. VII. Application of the open‐shell coupled‐cluster approach to simple π‐electron model systems , 1979 .

[44]  R. Ahlrichs,et al.  Many body perturbation calculations and coupled electron pair models , 1979 .

[45]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[46]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[47]  Peter R. Taylor,et al.  Unlinked cluster effects in molecular electronic structure. I. The HCN and HNC molecules , 1978 .

[48]  K. Hirao,et al.  Cluster expansion of the wavefunction. Pseudo‐orbital theory based on the SAC expansion and its application to the spin density of open‐shell systems , 1978 .

[49]  P. Siegbahn Multiple substitution effects in configuration interaction calculations , 1978 .

[50]  J. Cizek,et al.  Correlation problems in atomic and molecular systems. VI. Coupled-cluster approach to open-shell systems , 1978 .

[51]  Isaiah Shavitt,et al.  Comparison of high-order many-body perturbation theory and configuration interaction for H2O , 1977 .

[52]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems. V. Spin‐adapted coupled cluster many‐electron theory , 1977 .

[53]  B. G. Adams,et al.  Application of graphical methods of spin algebras to limited CI approaches. I. Closed shell case , 1977 .

[54]  Debashis Mukherjee,et al.  Applications of a non-perturbative many-body formalism to general open-shell atomic and molecular problems: calculation of the ground and the lowest π-π* singlet and triplet energies and the first ionization potential of trans-butadiene , 1977 .

[55]  D. Mukherjee,et al.  Correlation problem in open-shell atoms and molecules. A non-perturbative linked cluster formulation , 1975 .

[56]  D. Mukherjee,et al.  A non-perturbative open-shell theory for atomic and molecular systems: Application to transbutadiene , 1975 .

[57]  Josef Paldus,et al.  Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems , 1974 .

[58]  秋山 佳巳 E. El Baz and B. Castel: Graphical Methods of Spin Algebras in Atomic, Nuclear, and Particle Physics, Marcel Dekker, New York 1972, x+428 ページ, 23.5×16cm, 7,020円 , 1973 .

[59]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst†‡§ , 1971 .

[60]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[61]  J. Cizek,et al.  Cluster expansion analysis for delocalized systems , 1969 .

[62]  I. Shavitt,et al.  An application of perturbation theory ideas in configuration interaction calculations , 1968 .

[63]  N. H. March,et al.  The many-body problem in quantum mechanics , 1968 .

[64]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[65]  Raymond J. Seeger,et al.  Lectures in Theoretical Physics , 1962 .

[66]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. I. SHELLS, ELECTRON PAIRS VS MANY-ELECTRON CORRELATIONS , 1962 .

[67]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[68]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[69]  R. Nesbet Brueckner's Theory and the Method of Superposition of Configurations , 1958 .

[70]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[71]  J. Hubbard The description of collective motions in terms of many-body perturbation theory. II. The correlation energy of a free-electron gas , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[72]  K. Brueckner,et al.  Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .

[73]  K. Brueckner,et al.  NUCLEAR SATURATION AND TWO-BODY FORCES. II. TENSOR FORCES , 1954 .

[74]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[75]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[76]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[77]  Rodney J. Bartlett,et al.  Molecular Applications of Coupled Cluster and Many-Body Perturbation Methods , 1980 .

[78]  Josef Paldus,et al.  Coupled Cluster Approach , 1980 .

[79]  B. Brandow Linked-Cluster Perturbation Theory for Closed- and Open-Shell Systems , 1977 .

[80]  M. Hernandez,et al.  A semi‐empirical MO theory for ionization potentials and electron affinities , 1977 .

[81]  R. Bartlett,et al.  Correlation energy in LiH, BH, and HF with many‐body perturbation theory using slater‐type atomic orbitals , 1976 .

[82]  A. C. Hurley Electron correlation in small molecules , 1976 .

[83]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[84]  Josef Paldus,et al.  Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems , 1975 .

[85]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[86]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[87]  R. Bartlett,et al.  Reduced Partitioning Procedure in Configuration Interaction Studies. I. Ground States , 1972 .

[88]  H. Schaefer The electronic structure of atoms and molecules : a survey of rigorous quantum mechanical results , 1972 .

[89]  S. Raimes Many-electron theory , 1972 .

[90]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[91]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[92]  P. Löwdin Studies in Perturbation Theory. V. Some Aspects on the Exact Self‐Consistent Field Theory , 1962 .