Texture control and seeded nucleation of nanosize structures of ferroelectric thin films

An overview is given on nucleation phenomena of Pb(Zr,Ti)O3 (PZT) thin films on Pt(111)-based substrates. Emphasis is given on in situ growth methods, particularly in situ reactive sputtering from three metallic targets. Growth of PZT thin films is discussed from the point of view of the PbOx–TiO2 phase diagram, PbO vapor pressure, and classical nucleation theory. The role of thin TiO2 affinity layers and spots is explained in the frame of this theory. Activation energies for desorption and chemisorption are adapted to comply with the fact that nucleation rates on TiO2 are much larger than the ones on bare Pt(111). The model reproduces well the PbO surface flux from bare Pt(111) to the affinity spots in the case of PbTiO3 nucleation and the reversed tendency in the case of PZT 40∕60 nucleation, explaining experimental observations. The critical size of nuclei was calculated to contain 8–10unit cells for PbTiO3∕Pt nucleation and 14–17 for PZT/Pt nucleation.

[1]  P. Muralt,et al.  PZT thin films for microsensors and actuators: Where do we stand? , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  H. Fujisawa,et al.  Observations of Island Structures at the Initial Growth Stage of PbZrxTi1-xO3 Thin Films Prepared by Metalorganic Chemical Vapor Deposition , 2000 .

[3]  G. M. Pound,et al.  Heterogeneous Nucleation of Crystals from Vapor , 1954 .

[4]  D. Wouters,et al.  Nucleation and orientation of sol-gel pzt-films on pt electrodes , 1997 .

[5]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[6]  J. Mackenzie,et al.  Crystallization Kinetics Of Metallo-Organics Derived Pzt Thin Film , 1990 .

[7]  H. Fujisawa,et al.  Observations of Domain Structure at Initial Growth Stage of PbTiO 3 Thin Films Grown by Mocvd , 1999 .

[8]  N. Setter,et al.  Microstructural evolution of dense and porous pyroelectric Pb_1−xCa_xTiO_3 thin films , 1999 .

[9]  Qi Zhang,et al.  Structural development in the early stages of annealing of sol–gel prepared lead zirconate titanate thin films , 1999 .

[10]  Paul Muralt,et al.  Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size , 2002 .

[11]  J. Frankel Kinetic theory of liquids , 1946 .

[12]  P. Muralt,et al.  Electron beam lithography with negative Calixarene resists on dense materials: Taking advantage of proximity effects to increase pattern density , 2005 .

[13]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[14]  R. Whatmore,et al.  The Role of an Intermetallic Phase on the Crystallization of Lead Zirconate Titanate in Sol–gel Process , 1998 .

[15]  J F Scott,et al.  Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions , 2003 .

[16]  J. Ziółkowski New method of calculation of the surface enthalpy of solids , 1989 .

[17]  Katsuhiro Aoki,et al.  Effects of Titanium Buffer Layer on Lead-Zirconate-Titanate Crystallization Processes in Sol-Gel Deposition Technique , 1995 .

[18]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[19]  J. Blakely,et al.  Surface self diffusion and surface energy measurements on platinum by the multiple scratch method , 1962 .

[20]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[21]  R. Scholz,et al.  Ferroelectric epitaxial nanocrystals obtained by a self-patterning method , 2003 .

[22]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[23]  K. Rieder,et al.  Dimer formation and surface alloying: a STM study of lead on Cu(211) , 1997 .

[24]  Paul Muralt,et al.  Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding , 1998 .

[25]  S. A. Kukushkin,et al.  Kinetics of thin film nucleation from multi-component vapor , 1995 .

[26]  R. Waser,et al.  Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity , 2002 .

[27]  Howard Reiss,et al.  The Kinetics of Phase Transitions in Binary Systems , 1950 .

[28]  M. Giovannini,et al.  Self-organized growth of cluster arrays , 1999 .

[29]  R. Whatmore,et al.  Sputtered lead scandium tantalate thin films: Pb4+ in B sites in the perovskite structure , 1997 .

[30]  Paul Muralt,et al.  Mixed titania-lead oxide seed layers for PZT growth on Pt(111): a study on nucleation, texture and properties , 2004 .

[31]  Nicolas Ledermann,et al.  {1 0 0}-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties , 2003 .

[32]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[33]  Paul Muralt,et al.  Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers , 1998 .

[34]  R. Waser,et al.  Registered Deposition of Nanoscale Ferroelectric Grains by Template‐Controlled Growth , 2005, Advanced materials.

[35]  K. L. Chopra,et al.  Thin Film Phenomena , 1969 .

[36]  J. Speck,et al.  Microstructural instability in single-crystal thin films , 1996 .

[37]  Zexiang Shen,et al.  Epitaxial thin films of PbTiO_3/SnO_2 heterostructures on sapphire , 1994 .

[38]  I-Wei Chen,et al.  Temperature–Time Texture Transition of Pb(Zr1−xTix)O3 Thin Films: II, Heat Treatment and Compositional Effects , 1994 .

[39]  Mino Green,et al.  Solid State Surface Science , 1970 .

[40]  T. Maeder,et al.  Growth of (111)-oriented PZT on RuO2(100)/Pt(111) electrodes by in-situ sputtering , 1999 .

[41]  U. Gösele,et al.  Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites , 2004, Nature materials.

[42]  R. Bruchhaus,et al.  Ferroelectric Pb (Zr, Ti)O3 thin films prepared by planar multi-target sputtering , 1992 .

[43]  Paul Muralt,et al.  Lithography-modulated self-assembly of small ferroelectric Pb(Zr, Ti)O3 single crystals , 2004 .

[44]  Oliver P. Ernst,et al.  Micropatterned immobilization of a G protein–coupled receptor and direct detection of G protein activation , 1999, Nature Biotechnology.

[45]  K. H. Hardtl,et al.  PbO vapour pressure in the Pb(Ti1−x)O3 system , 1969 .

[46]  J. Anderson,et al.  Nucleation and growth of thin films , 1978 .

[47]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[48]  T. Maeder,et al.  Excess lead in the perovskite lattice of pzt thin films made by in-situ reactive sputtering , 2001 .

[49]  T. Maeder,et al.  Domain and lattice contributions to dielectric and piezoelectric properties of Pb(Zrx, Ti_1−x)O_3 thin films as a function of composition , 1999 .

[50]  Nava Setter,et al.  Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates , 1994 .