Chemical Evolution in Hierarchical Models of Cosmic Structure. I. Constraints on the Early Stellar Initial Mass Function

I present a new Galactic chemical evolution model motivated by and grounded in the hierarchical theory of galaxy formation, as expressed by a halo merger history of the Galaxy. This model accurately reproduces the metallicity distribution function (MDF) for Population II stars residing today in the Galactic halo. Model MDFs are calculated for a fiducial Galaxy formation scenario and a range of assumptions about the astrophysics of star formation and chemical enrichment at early times. The observed MDF and the apparent absence of true Population III stars from the halo strongly imply that there is some critical metallicity, Zcr 10-4 Z?, below which low-mass star formation is inhibited and perhaps impossible. The observed constraints from the halo MDF, relative metal abundances from extremely metal-poor Galactic halo stars, and the ionizing photon budget needed to reionize the IGM together imply a stellar IMF below Zcr that is peaked in the range of massive stars that experience core-collapse supernovae, with mean mass M = 8-42 M?. This mass range is similar to the masses predicted by models of primordial star formation that account for formation feedback. A set of five plausible IMF cases is presented, ranging from broadly peaked with mean mass ~15 M? to narrowly peaked at mean mass ~70 M?. These IMF cases cannot be distinguished formally by the available constraints, but the models with lower characteristic mass produce overall better fits to the available data. The model also implies that metal-poor halo stars below [Fe/H] -3 had only 1-10 metal-free stars as their supernova precursors, such that the relative abundances in these halo stars exhibit IMF-weighted averages over the intrinsic yields of the first supernovae. This paper is the first part of a long-term project to connect the high-redshift in situ indicators of early star formation with the low-z, old remnants of the first stars.

[1]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[2]  J. Shull,et al.  Zero-Metallicity Stars and the Effects of the First Stars on Reionization , 1999, The Astrophysical journal.

[3]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[4]  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE FORMATION OF THE FIRST STARS I. MASS INFALL RATES, ACCRETION DISK STRUCTURE AND PROTOSTELLAR EVOLUTION , 2003 .

[5]  H. J. Mo,et al.  The abundance and clustering of dark haloes in the standard ΛCDM cosmogony , 2002 .

[6]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[7]  J. Shull,et al.  Probing the First Stars with Hydrogen and Helium Recombination Emission , 2000, astro-ph/0011303.

[8]  N. Gnedin Metal enrichment of the intergalactic medium , 1997, astro-ph/9709224.

[9]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[10]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[11]  Volker Bromm,et al.  The First Stars , 2004 .

[12]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[13]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[14]  K. Nomoto,et al.  Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .

[15]  First Stars, Very Massive Black Holes, and Metals , 2001, astro-ph/0111341.

[16]  Signatures of Stellar Reionization of the Universe , 1996, astro-ph/9611028.

[17]  J. B. Laird,et al.  A Survey of Proper Motion Stars. XIII. The Halo Population , 1996 .

[18]  W. Baade,et al.  The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula , 1944 .

[19]  Abraham Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2001 .

[20]  G. Wasserburg,et al.  Determination of Nucleosynthetic Yields of Supernovae and Very Massive Stars from Abundances in Metal-Poor Stars , 2001, astro-ph/0110532.

[21]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[22]  R. Schneider,et al.  The Detectability of the First Stars and Their Cluster Enrichment Signatures , 2003, astro-ph/0301628.

[23]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[24]  B. Ciardi,et al.  Early reionization by the first galaxies , 2003 .

[25]  Volker Bromm,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2002 .

[26]  James R. Wilson,et al.  The r-process and neutrino-heated supernova ejecta , 1994 .

[27]  Accretion onto a primordial protostar , 2003, astro-ph/0312456.

[28]  L. Spitzer Physical processes in the interstellar medium , 1998 .

[29]  Donald F. Figer An upper limit to the masses of stars , 2005, Nature.

[30]  On the properties of massive Population III stars and metal-free stellar populations , 2001, astro-ph/0110697.

[31]  Early Metal Enrichment of the Intergalactic Medium by Pregalactic Outflows , 2000, astro-ph/0010158.

[32]  N. Christlieb,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[33]  William H. Press,et al.  The Cosmological constant , 1992 .

[34]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[35]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[36]  James S. Bullock,et al.  Halo Substructure and the Power Spectrum , 2003 .

[37]  Takeo Minezaki,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[38]  Brant Robertson,et al.  Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe , 2006 .

[39]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[40]  J. Silk,et al.  Cosmic Star Formation, Reionization, and Constraints on Global Chemical Evolution , 2004, astro-ph/0405355.

[41]  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE REIONIZATION HISTORY AT HIGH REDSHIFTS I: PHYSICAL MODELS AND NEW CONSTRAINTS FROM CMB POLARIZATION , 2003 .

[42]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[43]  Andrew R. Liddle,et al.  Cosmological Inflation and Large-Scale Structure , 2000 .

[44]  R. Larson A Simple Probabilistic Theory of Fragmentation , 1973 .

[45]  T. Beers,et al.  Stellar Archaeology: A Keck Pilot Program on Extremely Metal-poor Stars from the Hamburg/ESO Survey. II. Abundance Analysis , 2002, astro-ph/0204083.

[46]  W. Sargent,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .

[47]  U. California,et al.  How to plant a merger tree , 1997, astro-ph/9711080.

[48]  Nucleosynthesis, Reionization, and the Mass Function of the First Stars , 2004, astro-ph/0401376.

[49]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[50]  J. Cowan,et al.  A Simple Model for r-Process Scatter and Halo Evolution , 2001, astro-ph/0103083.

[51]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[52]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[53]  S. Ryan,et al.  Subdwarf studies. III, The halo metallicity distribution , 1991 .

[54]  Chemical enrichment and the origin of the colour-magnitude relation of elliptical galaxies in a hierarchical merger model , 1998 .

[55]  K. Omukai,et al.  Formation of the First Stars by Accretion , 2003 .

[56]  Evolving Spectra of Population III Stars: Consequences for Cosmological Reionization , 2002, astro-ph/0206390.

[57]  T. Beers,et al.  Observational Evidence for a Different Initial Mass Function in the Early Galaxy , 2004, astro-ph/0412423.

[58]  The fragmentation of pre-enriched primordial objects , 2001 .

[59]  G. Wasserburg,et al.  Abundances In Very Metal-Poor Dwarf Stars , 2004, astro-ph/0405286.

[60]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[61]  The number and metallicities of the most metal-poor stars , 2002, astro-ph/0211344.

[62]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE STRUCTURE AND EVOLUTION OF EARLY COSMOLOGICAL HII REGIONS , 2004 .

[63]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[64]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[65]  J. Shull,et al.  Cosmological Effects of the First Stars: Evolving Spectra of Population III , 2002, astro-ph/0206389.

[66]  T. Beers,et al.  A Search for Stars of Very Low Metal Abundance. III. UBV Photometry of Metal-weak Candidates , 1985 .

[67]  D. Weinberg,et al.  Metal Enrichment of the Intergalactic Medium in Cosmological Simulations , 2001, astro-ph/0105065.

[68]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[69]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[70]  C. Baugh,et al.  The metal enrichment of the intracluster medium in hierarchical galaxy formation models , 2004, astro-ph/0408529.

[71]  J. Truran,et al.  Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.