On a Conjecture of Erd{ő}s, Frankl and F{ü}redi

Let $\mathcal{X}$ be an $n$-element set. Assume $\mathscr{F}$ is a collection of subsets of $\mathcal{X}$. We call $\mathscr{F}$ an $r$-cover-free family if $F_0\nsubseteq F_1\cup\cdots\cup F_r$ holds for all distinct $F_0,F_1,...,F_r\in\mathscr{F}$. Given $r$, denote $n(r)$ the minimal $n$ such that there exits an $r$-cover-free family on an $n$-element set with cardinality larger than $n$. Thirty years ago, Erd\H{o}s, Frankl and F{\"u}redi \cite{CFF} proved that $\binom{r+2}{2}\leq n(r) (1+o(1))\frac{5}{6}r^2$, without proof. In this paper, it is proved that $\lim_{r\rightarrow\infty} n(r)/r^2\geq(15+\sqrt{33})/24$, which is a quantity in $[6/7,7/8]$. In particular, their conjecture is proved to be true for all r-cover-free families with uniform $(r+1)$-subsets.

[1]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[2]  Arkadii G. D'yachkov,et al.  A survey of superimposed code theory , 1983 .

[3]  Frank Kwang-ming Hwang,et al.  Detecting and locating electrical shorts using group testing , 1989 .

[4]  Miklós Ruszinkó,et al.  On the Upper Bound of the Size of the R-Cover-Free Families , 1993, Proceedings. IEEE International Symposium on Information Theory.

[5]  Richard C. Singleton,et al.  Nonrandom binary superimposed codes , 1964, IEEE Trans. Inf. Theory.

[6]  Frank K. Hwang,et al.  Exploring the missing link among d-separable, d_-separable and d-disjunct matrices , 2007, Discret. Appl. Math..

[7]  Arkadii G. D'yachkov,et al.  Bounds on the rate of superimposed codes , 2014, 2014 IEEE International Symposium on Information Theory.

[8]  Ding-Zhu Du,et al.  New Constructions of One- and Two-Stage Pooling Designs , 2008, J. Comput. Biol..

[9]  Frank K. Hwang,et al.  When is Individual Testing Optimal for Nonadaptive Group Testing? , 2001, SIAM J. Discret. Math..

[10]  Zoltán Füredi On r-Cover-free Families , 1996, J. Comb. Theory, Ser. A.

[11]  D. Du,et al.  Pooling Designs And Nonadaptive Group Testing: Important Tools For Dna Sequencing , 2006 .

[12]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .

[13]  Joseph A. Thas,et al.  In: Handbook of Incidence Geometry: Buildings and Foundations , 1995 .

[14]  Francis Buekenhout Handbook of incidence geometry : buildings and foundations , 1995 .

[15]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[16]  R. Dorfman The Detection of Defective Members of Large Populations , 1943 .

[17]  Charles J. Colbourn,et al.  Turan-type problems in group testing, coding theory and cryptography , 1996 .

[18]  Jack K. Wolf,et al.  Born again group testing: Multiaccess communications , 1985, IEEE Trans. Inf. Theory.