Life Cycle Energy and Greenhouse Gas (GHG) Assessments

[1]  Helmut Antrekowitsch,et al.  Recycling automotive magnesium scrap , 2002 .

[2]  Sujit Das,et al.  Magnesium for automotive applications: Primary production cost assessment , 2003 .

[3]  R. Banerjee,et al.  Net energy analysis of hydrogen storage options , 2005 .

[4]  Henry Hu,et al.  Potential Magnesium Alloys for High Temperature Die Cast Automotive Applications: A Review , 2003 .

[5]  Hartmut Stahl,et al.  Recovery Options for Plastic Parts from End-of-Life Vehicles: an Eco-Efficiency Assessment , 2003 .

[6]  T. Suzuki,et al.  Evaluation of effects of lightening trucks on environment by LCA , 2003, 2003 EcoDesign 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing.

[7]  Tadeusz W Patzek,et al.  A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle , 2007 .

[8]  Seungdo Kim,et al.  Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions , 2005 .

[9]  O. Jolliet,et al.  Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics , 2001 .

[10]  Franklin Associates REVISED FINAL REPORT CRADLE-TO-GATE LIFE CYCLE INVENTORY OF NINE PLASTIC RESINS AND TWO POLYURETHANE PRECURSORS , 2007 .

[11]  Sujit Das Primary magnesium production costs for automotive applications , 2008 .

[12]  Chris D. Rudd,et al.  Low-cost carbon-fibre-based automotive body panel systems: A performance and manufacturing cost comparison , 2008 .

[13]  Vinod K. Natarajan,et al.  The Performance of Future ICE and Fuel Cell Powered Vehicles and Their Potential Fleet Impact , 2004 .

[14]  P. Koltun,et al.  Global warming impact of the magnesium produced in China using the Pidgeon process , 2004 .

[15]  John W. Sutherland,et al.  Sustainability of the automotive recycling infrastructure: review of current research and identification of future challenges , 2008 .

[16]  F. E. Mark,et al.  Energy recovery from automotive shredder residue through co-combustion with municipal solid waste , 1998 .

[17]  Roel Hammerschlag,et al.  Ethanol's energy return on investment: a survey of the literature 1990-present. , 2006, Environmental science & technology.

[18]  Alan I. Taub,et al.  Automotive Materials: Technology Trends and Challenges in the 21st Century , 2006 .

[19]  Mamoru Mabuchi,et al.  Life cycle inventory study on magnesium alloy substitution in vehicles , 2007 .

[20]  Sabrina Grassini,et al.  Environmental Impact and Corrosion Behaviour Assessment of Magnesium Castings , 2005 .

[21]  Marko P. Hekkert,et al.  Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development , 2005 .

[22]  Andrew D. Jones,et al.  Supporting Online Material for: Ethanol Can Contribute To Energy and Environmental Goals , 2006 .

[23]  F. Stodolsky,et al.  POTENTIAL APPLICATIONS OF WROUGHT MAGNESIUM ALLOYS FOR PASSENGER VEHICLES. , 1995 .

[24]  Sujit Das,et al.  THE COST OF AUTOMOTIVE POLYMER COMPOSITES: A REVIEW AND ASSESSMENT OF DOE'S LIGHTWEIGHT MATERIALS COMPOSITES RESEARCH , 2001 .

[25]  T. Patzek Thermodynamics of the Corn-Ethanol Biofuel Cycle , 2004 .

[26]  Lester B. Lave,et al.  Evaluating automobile fuel/propulsion system technologies , 2003 .

[27]  W. Haije,et al.  COMPARATIVE ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF COMPOSITE MATERIALS , 1997 .

[28]  Manuel Frondel,et al.  Biodiesel: A New Oildorado? , 2005 .

[29]  Frank Stodolsky,et al.  Life-Cycle Energy Savings Potential from Aluminum-Intensive Vehicles by , 2002 .

[30]  R. Derosa,et al.  Current State of Recycling Sheet Molding Compounds and Related Materials , 2005 .

[31]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[32]  Bert Bras,et al.  A GLOBAL PERSPECTIVE ON THE ENVIRONMENTAL CHALLENGES FACING THE AUTOMOTIVE INDUSTRY: STATE-OF-THE-ART AND DIRECTIONS FOR THE FUTURE , 2004 .

[33]  B. Höhlein,et al.  Assessment of Fuel‐Cell‐Based Passenger Cars , 2004 .

[34]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Geoffrey P. Hammond,et al.  Embodied energy and carbon in construction materials , 2008 .

[36]  A. Tharumarajah,et al.  Is there an environmental advantage of using magnesium components for light-weighting cars? , 2007 .

[37]  F. Cherubini,et al.  LCA of magnesium production Technological overview and worldwide estimation of environmental burdens , 2008 .

[38]  John B. Heywood,et al.  Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment , 2006 .

[39]  D. Eliezer,et al.  Magnesium Science, Technology and Applications , 1998 .

[40]  Ndue Kanari,et al.  End-of-life vehicle recycling in the european union , 2003 .

[41]  Gary A. Davis,et al.  LIFE-CYCLE ENVIRONMENTAL EVALUATION OF ALUMINUM AND COMPOSITE INTENSIVE VEHICLES , 2001 .