Distal tephras along the SE European margin date powerful explosive eruptions from the Elbrus volcanic center (Greater Caucasus)

[1]  M. Frechen,et al.  New Data on Geochronology of the Upper Quaternary Loess–Soil Series in the Terek–Kuma Lowland , 2022, Lithology and Mineral Resources.

[2]  OUP accepted manuscript , 2022, Journal Of Petrology.

[3]  K. Wilkinson,et al.  Middle Pleistocene environments, landscapes and tephrostratigraphy of the Armenian Highlands: evidence from Bird Farm 1, Hrazdan Valley , 2021, Journal of Quaternary Science.

[4]  R. Sulpizio,et al.  Lake Ohrid’s tephrochronological dataset reveals 1.36 Ma of Mediterranean explosive volcanic activity , 2021, Scientific data.

[5]  O. Oms,et al.  Five-fold expansion of the Caspian Sea in the late Pliocene: New and revised magnetostratigraphic and 40Ar/39Ar age constraints on the Akchagylian Stage , 2021 .

[6]  F. Lehmkuhl,et al.  Disentangling Sedimentary Pathways for the Pleniglacial Lower Danube Loess Based on Geochemical Signatures , 2021, Frontiers in Earth Science.

[7]  M. Chiaradia,et al.  Young Silicic Magmatism of the Greater Caucasus, Russia, with implication for its delamination origin based on zircon petrochronology and thermomechanical modeling , 2021 .

[8]  M. Trieloff,et al.  Land-sea correlations in the Eastern Mediterranean region over the past c. 800 kyr based on macro- and cryptotephras from ODP Site 964 (Ionian Basin) , 2021 .

[9]  V. Astakhov,et al.  Loessoids of Russia: Varieties and distribution , 2021 .

[10]  V. Lebedev,et al.  Neogene–Quaternary Magmatism in Eastern Balkaria (North Caucasus, Russia): Evidence from the Isotope–Geochronological Data , 2021, Doklady Earth Sciences.

[11]  A. Murray,et al.  Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition , 2020, Quaternary International.

[12]  I. Snowball,et al.  Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia , 2020, Quaternary Research.

[13]  T. Yanina,et al.  Paleogeography of the Atelian regression in the Caspian Sea (based on drilling data) , 2020, Quaternary International.

[14]  K. Wilkinson,et al.  A revised AMS and tephra chronology for the Late Middle to Early Upper Paleolithic occupations of Ortvale Klde, Republic of Georgia. , 2020, Journal of human evolution.

[15]  Yu. V. Belyaev,et al.  The Late Quaternary Evolution of the Upper Reaches of Fluvial Systems in the Southern East European Plain , 2020, Quaternary.

[16]  A. Hogg,et al.  Sub-millennial eruptive recurrence in the silicic Mangaone Subgroup tephra sequence, New Zealand, from Bayesian modelling of zircon double-dating and radiocarbon ages , 2020 .

[17]  A. Tesakov,et al.  Aminostratigraphical test of the East European Mammal Zonation for the late Neogene and Quaternary , 2020, Quaternary Science Reviews.

[18]  D. Garbe‐Schönberg,et al.  TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific) , 2020 .

[19]  T. I. Oleinikova,et al.  Petrological-Geochemical Characteristics of Lavas, Sources and Evolution of Magmatic Melts of the Kazbek Neovolcanic Center (Greater Caucasus) , 2019, Petrology.

[20]  G. Sottili,et al.  Extending the tephra and palaeoenvironmental record of the Central Mediterranean back to 430 ka: A new core from Fucino Basin, central Italy , 2019, Quaternary Science Reviews.

[21]  V. Doronichev,et al.  The first laminar Mousterian obsidian industry in the north-central Caucasus, Russia (preliminary results of a multi-disciplinary research at Saradj-Chuko Grotto) , 2019, Archaeological Research in Asia.

[22]  P. Renne,et al.  Evidence for a large-magnitude eruption from Campi Flegrei caldera (Italy) at 29 ka , 2019, Geology.

[23]  K. Richards,et al.  Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations , 2019, Global and Planetary Change.

[24]  J. Singarayer,et al.  Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution , 2019, Earth-Science Reviews.

[25]  Christian Zeeden,et al.  Loess correlations – Between myth and reality , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[26]  O. Moine,et al.  A luminescence‐based chronology for the Harletz loess sequence, Bulgaria , 2018, Boreas.

[27]  T. D. Morozova,et al.  Morphology and micromorphology of the loess-paleosol sequences in the south of the East European plain (MIS 1–MIS 17) , 2018, CATENA.

[28]  A. Murray,et al.  Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site , 2018, Nature Communications.

[29]  Tai-bao Yang,et al.  Luminescence chronology and age model application for the upper part of the Chumbur-Kosa loess sequence in the Sea of Azov, Russia , 2018, Journal of Mountain Science.

[30]  G. Vashakidze,et al.  Chronology of Magmatic Activity and Petrologic–Mineralogical Characteristics of Lavas of Kazbek Quaternary Volcano, Greater Caucasus , 2018, Petrology.

[31]  Jie Chen,et al.  A luminescence dating study of loess deposits from the Beglitsa section in the Sea of Azov, Russia , 2017, Quaternary International.

[32]  G. Danukalova,et al.  State of stratigraphic knowledge of Quaternary deposits in European Russia: Unresolved issues and challenges for further research , 2017, Quaternary International.

[33]  Yu. V. Gol’tsman,et al.  Early Pleistocene magmatism in the central part of the Greater Caucasus , 2017, Doklady Earth Sciences.

[34]  O. Borisova,et al.  Reconstruction of Late Pleistocene events in the periglacial area in the southern part of the East European Plain , 2017, Doklady Earth Sciences.

[35]  T. Yanina,et al.  Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data) , 2017 .

[36]  F. Lehmkuhl,et al.  New luminescence-based geochronology framing the last two glacial cycles at the southern limit of European Pleistocene loess in Stalać (Serbia) , 2017 .

[37]  I. Dunkl,et al.  Application of combined U-Th-disequilibrium/U-Pb and (U-Th)/He zircon dating to tephrochronology , 2017 .

[38]  T. Yanina,et al.  Identification and age of submarine Girkanian sediment beds (Upper Pleistocene) in the Caspian Sea , 2017 .

[39]  C. Necula,et al.  The Lower Danube Loess, New Age Constraints from Luminescence Dating, Magnetic Proxies and Isochronous Tephra Markers , 2017 .

[40]  J. Rougier,et al.  Global recording rates for large eruptions , 2016, Journal of Applied Volcanology.

[41]  A. Markova,et al.  Pleistocene climatic stratigraphy and environments of the Terek-Kuma Lowland (NW Caspian sea region) inferred from palynological, paleomagnetic and rodent records of the long Otkaznoye sediment sequence , 2016 .

[42]  Biao Zeng,et al.  Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since Marine Isotope Stage 11 , 2016, Journal of Mountain Science.

[43]  D. Karátson,et al.  The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians - A tephrostratigraphic approach for the 51-29 ka BP time interval , 2016 .

[44]  R. Kurbanov,et al.  Middle to Late Pleistocene topography evolution of the North-Eastern Azov region , 2016 .

[45]  P. Baumgart,et al.  Loess in Armenia – stratigraphic findings and palaeoenvironmental indications , 2016 .

[46]  F. Lehmkuhl,et al.  Danube loess stratigraphy : Towards a pan-European loess stratigraphic model , 2015 .

[47]  T. Yanina,et al.  New data on the upper quaternary stratigraphy of the North Caspian Sea , 2015, Doklady Earth Sciences.

[48]  S. Self,et al.  Tying down eruption risk , 2015 .

[49]  P. Kyle,et al.  Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass , 2015, International Journal of Earth Sciences.

[50]  T. Yanina The Ponto-Caspian region: Environmental consequences of climate change during the Late Pleistocene , 2014 .

[51]  G. Vashakidze,et al.  The catalogue of Quaternary volcanoes of the Greater Caucasus based on geochronological, volcanological and isotope-geochemical data , 2014, Journal of Volcanology and Seismology.

[52]  Yu. V. Gol’tsman,et al.  Two stages of explosive volcanism of the Elbrus area: Geochronology, petrochemical and isotopic-geochemical characteristics of volcanic rocks, and their role in the neogene-quaternary evolution of the Greater Caucasus , 2014, Stratigraphy and Geological Correlation.

[53]  P. Yu,et al.  Girkanian epoch in the Pleistocene history of the Caspian Sea , 2014 .

[54]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[55]  D. Muhs The geologic records of dust in the Quaternary , 2013 .

[56]  B. Onac,et al.  The Campanian Ignimbrite/Y5 tephra layer – A regional stratigraphic marker for Isotope Stage 3 deposits in the Lower Danube region, Romania , 2013 .

[57]  T. Yanina Biostratigraphy of the Middle and Upper Pleistocene of the Caspian Region , 2013 .

[58]  V. Lebedev,et al.  Lead Isotope composition and origin of the quaternary lavas of Elbrus Volcano, the Greater Caucasus: High-precision MC-ICP-MS data , 2013, Petrology.

[59]  A. Velichko,et al.  Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov Region , 2012, Doklady Earth Sciences.

[60]  B. Tutberidze Cenozoic Volcanism of the Caucasian Mobile Belt in Georgia, its Geological-Petrological Peculiarities and Geodynamic Conditions , 2012 .

[61]  V. Lebedev,et al.  Geochronology and evolution of quaternary volcanism at the Keli Highland, Greater Caucasus , 2011 .

[62]  V. Lebedev,et al.  Magmatic activity within the Northern Caucasus in the Early Neopleistocene: Active volcanoes of the Elbrus center, chronology, and character of eruptions , 2011 .

[63]  A. Velichko,et al.  Basic features of late pleistocene soil formation in the east european plain and their paleogeographic interpretation , 2010 .

[64]  V. Doronichev,et al.  Significance of Ecological Factors in the Middle to Upper Paleolithic Transition , 2010, Current Anthropology.

[65]  Natalia I. Deligne,et al.  Recurrence rates of large explosive volcanic eruptions , 2010 .

[66]  Yu. V. Gol’tsman,et al.  Geochronology of eruptions and parental magma sources of Elbrus volcano, the Greater Caucasus: K-Ar and Sr-Nd-Pb isotope data , 2010 .

[67]  V. G. Sakhno,et al.  Total duration and spatial migration of Quaternary volcanism in the El’brus region, Greater Caucasus , 2010 .

[68]  T. D. Morozova,et al.  Progressively cooler, drier interglacials in southern Russia through the Quaternary: Evidence from the Sea of Azov region , 2009 .

[69]  T. H. Andel,et al.  Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy , 2006 .

[70]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[71]  V. Lebedev,et al.  Chronology of magmatic activity of the elbrus volcano (Greater Caucasus) : Evidence from K-Ar isotope dating of lavas , 2005 .

[72]  J. Lowenstern,et al.  The Elbrus Caldera in the Northern Caucasus: Geological structure and time of formation , 2004 .

[73]  Andreas Kääb,et al.  The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus , 2003, Journal of Glaciology.

[74]  Todd A. Koetje,et al.  Middle and late Pleistocene investigations of Myshtulagty Lagat (Weasel Cave) North Ossetia, Russia , 2003 .

[75]  F. Legros Minimum volume of a tephra fallout deposit estimated from a single isopach , 2000 .

[76]  I. Melekestsev,et al.  THE ELBRUS CALDERA IN THE NORTHERN CAUCASUS , 1998 .

[77]  D. Pyle Assessment of the minimum volume of tephra fall deposits , 1995 .

[78]  H. Taylor,et al.  40Ar/39Ar and 18O/16O studies of the Chegem ash-flow caldera and the Eldjurta Granite: Cooling of two late Pliocene igneous bodies in the Greater Caucasus Mountains, Russia , 1995 .

[79]  W. McDonough,et al.  The composition of the Earth , 1995 .

[80]  K. Pye The nature, origin and accumulation of loess , 1995 .

[81]  Malcolm Sambridge,et al.  Mixture modeling of multi-component data sets with application to ion-probe zircon ages , 1994 .

[82]  P. Lipman,et al.  2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits , 1993 .

[83]  S. Jacobsen,et al.  The Pb isotopic evolution of the Earth: inferences from river water suspended loads , 1993 .

[84]  A. Velichko Loess-paleosol formation on the Russian plain , 1990 .

[85]  S. J. Goldstein,et al.  Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution , 1988 .

[86]  Pnrnn A. JBzEr,et al.  Natural hydration and ion exchange of obsidian: an electron microprobe study , 1978 .