The effects of Ca2SiO4-Ca3(PO4)2 ceramics on adult human mesenchymal stem cell viability, adhesion, proliferation, differentiation and function.

[1]  I. M. Martínez,et al.  Preparation and characterization of novel bioactive α-Tricalcium Phosphate doped with Dicalcium Silicate ceramics , 2012 .

[2]  I. M. Martínez,et al.  New block graft of α-TCP with silicon in critical size defects in rabbits: Chemical characterization, histological, histomorphometric and micro-CT study , 2012 .

[3]  P. Velásquez,et al.  The Sub‐System α‐TCPss‐Silicocarnotite Within the Binary System Ca3(PO4)2–Ca2SiO4 , 2011 .

[4]  M. Shie,et al.  The role of silicon in osteoblast-like cell proliferation and apoptosis. , 2011, Acta biomaterialia.

[5]  P. Velásquez,et al.  Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2–Ca2SiO4 , 2010 .

[6]  F. Monteiro,et al.  In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics. , 2010, Acta biomaterialia.

[7]  Fanhao Meng,et al.  Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. , 2009, Acta biomaterialia.

[8]  J. Chevalier,et al.  Ceramics for medical applications: A picture for the next 20 years , 2009 .

[9]  M. Vallet‐Regí,et al.  In vitro behaviour of adult mesenchymal stem cells seeded on a bioactive glass ceramic in the SiO(2)-CaO-P(2)O(5) system. , 2008, Acta biomaterialia.

[10]  M. Tanihara,et al.  Synthesis of Si-Containing Tricalcium Phosphate and its Sintering Behavior , 2007 .

[11]  M. Sayer,et al.  Silicon substitution in the calcium phosphate bioceramics. , 2007, Biomaterials.

[12]  P. Pena,et al.  Vidrios y Vitrocerámicos Bioactivos , 2007 .

[13]  P. Velásquez,et al.  In Situ Bone‐Like Apatite Formation From a Bioeutectic® Ceramic in SBF Dynamic Flow , 2007 .

[14]  E. Demchuk,et al.  Impact of Silanol Surface Density on the Toxicity of Silica Aerosols Measured by Erythrocyte Haemolysis , 2006, Journal of occupational and environmental hygiene.

[15]  P. Aza,et al.  Materiales biocerámicos cristalinos , 2005 .

[16]  G. Vunjak‐Novakovic,et al.  Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro. , 2004, Tissue engineering.

[17]  Xuedong Zhou,et al.  Influence of sintering temperatures on hardness and Young's modulus of tricalcium phosphate bioceramic by nanoindentation technique , 2004 .

[18]  Julian R. Jones,et al.  Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. , 2004, Biomaterials.

[19]  F. Hughes,et al.  In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. , 2004, Journal of biomedical materials research. Part A.

[20]  D. Kiel,et al.  Dietary Silicon Intake Is Positively Associated With Bone Mineral Density in Men and Premenopausal Women of the Framingham Offspring Cohort , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  O. Ringdén,et al.  HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. , 2003, Experimental hematology.

[22]  M. Sayer,et al.  Structure and composition of silicon-stabilized tricalcium phosphate. , 2003, Biomaterials.

[23]  B. Fubini,et al.  Cytotoxic and transforming effects of silica particles with different surface properties in Syrian hamster embryo (SHE) cells. , 2000, Toxicology in vitro : an international journal published in association with BIBRA.

[24]  J. Polak,et al.  Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. , 2000, Biochemical and biophysical research communications.

[25]  M. Sayer,et al.  Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. , 1999, Biomaterials.

[26]  S. Kadiyala,et al.  Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. , 1997, Cell transplantation.

[27]  S Tamai,et al.  In vitro bone formation by rat marrow cell culture. , 1996, Journal of biomedical materials research.

[28]  C. G. Groot,et al.  Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. , 1993, Journal of biomedical materials research.

[29]  D. Scudiero,et al.  Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. , 1988, Cancer research.

[30]  E. M. Carlisle A silicon requirement for normal skull formation in chicks. , 1980, The Journal of nutrition.

[31]  E. M. Carlisle Silicon: An Essential Element for the Chick , 1972, Science.

[32]  E M Carlisle,et al.  Silicon: A Possible Factor in Bone Calcification , 1970, Science.

[33]  C. G. Shull The Determination of X-Ray Diffraction Line Widths , 1946 .

[34]  I. M. Martínez,et al.  In vitro behavior of α-tricalcium phosphate doped with dicalcium silicate in the system Ca2SiO4–Ca3(PO4)2 , 2012 .

[35]  Serena M. Best,et al.  Bioceramics: Past, present and for the future , 2008 .

[36]  B. Boyan,et al.  Titanium surface roughness alters responsiveness of MG63 osteoblast‐like cells to 1α,25‐(OH)2D3 , 1998 .

[37]  F. Guitián,et al.  Bioeutectic: a new ceramic material for human bone replacement. , 1997, Biomaterials.