Prediction of the transfer length of prestressing strands with neural networks

Funding for this study were received from the Spanish Ministry of Science and Innovation and ERDF (Research Project BIA2006-05521, BIA2009-12722, and BIA2011-23602) and from the Spanish Ministry of Education (TIN2009-14205-C04-03 and Consolider Ingenio 2010 CSD2007-00018), as well as the European Community with the FEDER funds.

[1]  P. Serna,et al.  Bond of 13 mm prestressing steel strands in pretensioned concrete members , 2012 .

[2]  Pichai Nimityongskul,et al.  An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks , 2009 .

[3]  José R. Martí-Vargas,et al.  Test method for determination of the transmission and anchorage lengths in prestressed reinforcement , 2006 .

[4]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[5]  Paki Turgut,et al.  The use of neural networks in concrete compressive strength estimation , 2010 .

[6]  Rajan Sen,et al.  COMPARATIVE STUDY OF TRANSFER LENGTH IN FIBERGLASS AND STEEL PRETENSIONED CONCRETE MEMBERS , 1993 .

[7]  Hojjat Adeli,et al.  Neural Networks in Civil Engineering: 1989–2000 , 2001 .

[8]  José R. Martí-Vargas,et al.  Reliability of Transfer Length Estimation from Strand End Slip , 2007 .

[9]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[10]  Víctor Yepes,et al.  Caracterización estadística de tableros pretensados para carreteras , 2009 .

[11]  José R. Martí-Vargas,et al.  Statistical Approach to Effect of Factors Involved in Bond Performance of Steel Fiber-Reinforced Concrete , 2011 .

[12]  J. R. Martí-Vargas,et al.  Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members , 2013 .

[13]  S. Rizkalla,et al.  Transfer and Development Lengths of Carbon Fiber Reinforced Polymers Prestressing Reinforcement , 1999 .

[14]  I. Yeh Modeling slump of concrete with fly ash and superplasticizer , 2008 .

[15]  Gyorgy L. Balazs,et al.  TRANSFER LENGTH OF PRESTRESSING STRAND AS A FUNCTION OF DRAW-IN AND INITIAL PRESTRESS , 1993 .

[16]  T E Cousins,et al.  REDUCED STRAND SPACING IN PRETENSIONED, PRESTRESSED MEMBERS , 1994 .

[17]  Paul H. Kaar,et al.  Influence of Concrete Strength On Strand Transfer Length , 1963 .

[18]  C. A. Arbeláez,et al.  Analytical model for transfer length prediction of 13 mm prestressing strand , 2007 .

[19]  Rafik Y. Itani,et al.  Effect of End Blocks on Anchorage Zone Stresses in Prestressed Concrete Girders , 1984 .

[20]  Edwin G. Burdette,et al.  DEVELOPMENT LENGTH AND LATERAL SPACING REQUIREMENTS OF PRESTRESSING STRAND FOR PRESTRESSED CONCRETE BRIDGE GIRDERS , 1994 .

[21]  Antonio Nanni,et al.  Pretensioned Prestressed Concrete Memberswith Bonded Fiber Reinforced Plastic Tendons:Development and Flexural Bond Lengths (Static) , 1992 .

[22]  Víctor Yepes,et al.  CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy , 2012, J. Comput. Civ. Eng..

[23]  Pavel Pudil,et al.  Feature selection toolbox , 2002, Pattern Recognit..

[24]  J. R. Marti-Vargas Transfer and development lengths of concentrically prestressed concrete , 2006 .

[25]  José R. Martí-Vargas,et al.  Experimental Technique for Measuring the Long‐term Transfer Length in Prestressed Concrete , 2013 .

[26]  J Meir,et al.  ALTERNATIVES TO THE CURRENT AASHTO STANDARD BRIDGE SECTIONS. FINAL REPORT , 1995 .

[27]  Mehmet M. Kose,et al.  Modeling of transfer length of prestressing strands using genetic programming and neuro-fuzzy , 2010, Adv. Eng. Softw..

[28]  Norman W. Hanson,et al.  INFLUENCE OF SURFACE ROUGHNESS OF PRESTRESSING STRAND ON BOND PERFORMANCE , 1969 .

[29]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[30]  Ned H. Burns,et al.  Measured transfer lengths of 0.5 and 0.6 in. strands in pretensioned concrete , 1996 .

[31]  David W Johnston,et al.  Transfer and Development Length of Epoxy Coated and Uncoated Prestressing Strand , 1990 .

[32]  Ned H. Burns,et al.  Measurement of Transfer Lengths on Pretensioned Concrete Elements , 1997 .

[33]  B. Oh,et al.  REALISTIC EVALUATION OF TRANSFER LENGTHS IN PRETENSIONED, PRESTRESSED CONCRETE MEMBERS , 2000 .

[34]  Harun Tanyildizi,et al.  Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete , 2009, Adv. Eng. Softw..

[35]  P. Serna,et al.  Effects of concrete composition on transmission length of prestressing strands , 2012 .

[36]  Víctor Yepes,et al.  Heuristic optimization of RC bridge piers with rectangular hollow sections , 2010 .

[37]  Paki Turgut,et al.  Artificial Neural Network Approach to Predict Compressive Strength of Concrete through Ultrasonic Pulse Velocity , 2010 .

[38]  Mehmet M Kose Prediction of transfer length of prestressing strands using neural networks , 2007 .

[39]  Donald R. Logan,et al.  ACCEPTANCE CRITERIA FOR BOND QUALITY OF STRAND FOR PRETENSIONED PRESTRESSED CONCRETE APPLICATIONS , 1997 .

[40]  Mahmut Bilgehan,et al.  A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches , 2011 .

[41]  Jui-Sheng Chou,et al.  Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques , 2011, J. Comput. Civ. Eng..

[42]  José R. Martí-Vargas,et al.  Prestress losses evaluation in prestressed concrete prismatic specimens , 2013 .

[43]  Arnaud Castel,et al.  Artificial neural network model for steel–concrete bond prediction , 2009 .

[44]  N. Burns,et al.  Experimental Assessment of Factors Affecting Transfer Length , 2003 .