Introduction to Quantum Thermodynamics: History and Prospects

Quantum Thermodynamics is a continuous dialogue between two independent theories: Thermodynamics and Quantum Mechanics. Whenever the two theories have addressed the same phenomena new insight has emerged. We follow the dialogue from equilibrium Quantum Thermodynamics and the notion of entropy and entropy inequalities which are the base of the II-law. Dynamical considerations lead to non-equilibrium thermodynamics of quantum Open Systems. The central part played by completely positive maps is discussed leading to the Gorini–Kossakowski–Lindblad–Sudarshan “GKLS” equation. We address the connection to thermodynamics through the system-bath weak-coupling-limit WCL leading to dynamical versions of the I-law. The dialogue has developed through the analysis of quantum engines and refrigerators. Reciprocating and continuous engines are discussed. The autonomous quantum absorption refrigerator is employed to illustrate the III-law. Finally, we describe some open questions and perspectives.

[1]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[2]  S. Miyashita,et al.  Dynamics of open quantum spin systems: An assessment of the quantum master equation approach. , 2016, Physical review. E.

[3]  Ronnie Kosloff,et al.  A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid , 1992 .

[4]  R. Alicki The Markov master equations and the Fermi golden rule , 1977 .

[5]  Friedemann Tonner,et al.  Autonomous quantum thermodynamic machines. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Julian Schwinger,et al.  Theory of Many-Particle Systems. I , 1959 .

[7]  M. Esposito,et al.  Quantum thermodynamics: a nonequilibrium Green's function approach. , 2014, Physical review letters.

[8]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[9]  G'eraldine Haack,et al.  Markovian master equations for quantum thermal machines: local versus global approach , 2017, 1707.09211.

[10]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[11]  Karl Heinz Hoffmann,et al.  The quantum refrigerator: The quest for absolute zero , 2008, 0808.0229.

[12]  Herbert Spohn,et al.  Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .

[13]  R. Alicki,et al.  Comment on "Reduced dynamics need not be completely positive" , 1995, Physical review letters.

[14]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[15]  J. Pekola,et al.  Heat transistor: demonstration of gate-controlled electronic refrigeration. , 2007, Physical review letters.

[16]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[17]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[18]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[19]  T. Brandes,et al.  Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping , 2016, 1602.01340.

[20]  C. Gogolin,et al.  Pushing the limits of the eigenstate thermalization hypothesis towards mesoscopic quantum systems. , 2013, Physical Review Letters.

[21]  M. Planck Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum , 1900 .

[22]  R. Kosloff,et al.  Characteristics of the limit cycle of a reciprocating quantum heat engine. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[24]  J. Brédas,et al.  Mode-selective vibrational modulation of charge transport in organic electronic devices , 2015, Nature Communications.

[25]  Dionisis Stefanatos Minimum-Time Transitions between Thermal and Fixed Average Energy States of the Quantum Parametric Oscillator , 2017, SIAM J. Control. Optim..

[26]  Sebastian Deffner,et al.  Energy–time uncertainty relation for driven quantum systems , 2011, 1104.5104.

[27]  Ronnie Kosloff,et al.  Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers , 2016, Entropy.

[28]  Ulrich Kleinekathöfer,et al.  Non-Markovian theories based on a decomposition of the spectral density. , 2004, The Journal of chemical physics.

[29]  L. Diósi Calderia-Leggett master equation and medium temperatures , 1993 .

[30]  D. Segal Two-level system in spin baths: non-adiabatic dynamics and heat transport. , 2014, The Journal of chemical physics.

[31]  R. Kubo,et al.  Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath , 1989 .

[32]  M. Katsnelson,et al.  Relaxation, thermalization, and Markovian dynamics of two spins coupled to a spin bath. , 2017, Physical review. E.

[33]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[34]  P. Hänggi,et al.  Fluctuation theorems: work is not an observable. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[36]  David Jennings,et al.  The extraction of work from quantum coherence , 2015, 1506.07875.

[37]  Florian Mintert,et al.  Performance of a quantum heat engine at strong reservoir coupling. , 2016, Physical review. E.

[38]  R. K. Wangsness,et al.  The Dynamical Theory of Nuclear Induction , 1953 .

[39]  Jonathan Oppenheim,et al.  A general derivation and quantification of the third law of thermodynamics , 2014, Nature Communications.

[40]  Albert Einstein,et al.  Strahlungs-Emission und ­Absorption nach der Quantentheorie , 1916 .

[41]  B. Andresen,et al.  Thermodynamics in finite time. I. The step-Carnot cycle , 1977 .

[42]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[43]  Rudolf Haag,et al.  Stability and equilibrium states , 1974 .

[44]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[45]  F. Haake Statistical treatment of open systems by generalized master equations , 1973 .

[46]  Pechukas,et al.  Reduced dynamics need not be completely positive. , 1994, Physical review letters.

[47]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[48]  Thomas Philbin,et al.  Quantum work in the Bohmian framework , 2017, 1707.06159.

[49]  Ronnie Kosloff,et al.  On the classical limit of quantum thermodynamics in finite time , 1992 .

[50]  J. Paz,et al.  Dynamics and thermodynamics of linear quantum open systems. , 2012, Physical review letters.

[51]  Reinhard F. Werner,et al.  Unbounded Generators of Dynamical Semigroups , 2017, Open Syst. Inf. Dyn..

[52]  P. Chernoff Product formulas, nonlinear semigroups, and addition of unbounded operators , 1974 .

[53]  Zhe Li,et al.  Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics , 2018 .

[54]  D. Segal,et al.  Qubit absorption refrigerator at strong coupling , 2017, 1709.02835.

[55]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[56]  Christoph Meier,et al.  Non-Markovian evolution of the density operator in the presence of strong laser fields , 1999 .

[57]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[58]  R. Kosloff,et al.  Quantum Equivalence and Quantum Signatures in Heat Engines , 2015, 1502.06592.

[59]  R. Kosloff,et al.  Universal features in the efficiency at maximal work of hot quantum Otto engines , 2014, 1406.6788.

[60]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[61]  Marlan O. Scully,et al.  Quantum statistics of a single-atom Scovil-Schulz-DuBois heat engine , 2017, 1710.00902.

[62]  G. Kurizki,et al.  Unified theory of dynamically suppressed qubit decoherence in thermal baths. , 2004, Physical review letters.

[63]  沙川 貴大,et al.  Thermodynamics of information processing in small systems , 2011 .

[64]  Ronnie Kosloff,et al.  The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier , 1996 .

[65]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[66]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[67]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[68]  Federico Cerisola,et al.  Work measurement as a generalized quantum measurement. , 2014, Physical review letters.

[69]  Tatsuhiko N. Ikeda,et al.  Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[71]  M. Esposito,et al.  Single-electron transistor strongly coupled to vibrations: counting statistics and fluctuation theorem , 2012, 1206.3960.

[72]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[73]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[74]  Gerardo Adesso,et al.  Performance bound for quantum absorption refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Orly Shenker,et al.  Logic and Entropy , 2000 .

[76]  A. Rezakhani,et al.  Entropy production and non-Markovian dynamical maps , 2017, Scientific Reports.

[77]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[78]  Ronnie Kosloff,et al.  Irreversible performance of a quantum harmonic heat engine , 2006 .

[79]  F. Benatti,et al.  Complete Positivity and Thermodynamics in a Driven Open Quantum System , 2015, 1502.00864.

[80]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[81]  I. I. Ivanchik THEORY OF THE MANY-PARTICLE SYSTEMS. , 1968 .

[82]  Robert Alicki Information is not physical , 2014 .

[83]  M. Moskalets,et al.  Dynamics of energy transport and entropy production in ac-driven quantum electron systems , 2016, 1604.02953.

[84]  E. Fermi Nuclear Physics : a course given by Enrico Fermi at the University of Chicago , 1950 .

[85]  R. Kosloff,et al.  On the relaxation of a two-level system driven by a strong electromagnetic field , 1995 .

[86]  J. B. Brask,et al.  Adding dynamical generators in quantum master equations , 2017, Physical Review A.

[87]  J. G. Muga,et al.  Shortcuts to Adiabaticity , 2012, 1212.6343.

[88]  R. Alicki From the GKLS Equation to the Theory of Solar and Fuel Cells , 2017, Open Syst. Inf. Dyn..

[89]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[90]  G.,et al.  On the Theory of Relaxation Processes * , 2022 .

[91]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[92]  Tatsuhiko N. Ikeda,et al.  Testing whether all eigenstates obey the eigenstate thermalization hypothesis. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Robert Alicki Thermoelectric generators as self-oscillating heat engines , 2016 .

[94]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[95]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[96]  G. Kurizki,et al.  Minimal universal quantum heat machine. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  V. Giovannetti,et al.  Slow Dynamics and Thermodynamics of Open Quantum Systems. , 2017, Physical review letters.

[98]  J. E. Geusic,et al.  Quantum Equivalent of the Carnot Cycle , 1967 .

[99]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[100]  Abraham Nitzan,et al.  Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model , 2016, 1607.07120.

[101]  Gleb Maslennikov,et al.  Quantum absorption refrigerator with trapped ions , 2017, Nature Communications.

[102]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[103]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[104]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[105]  Robert Alicki,et al.  Solar cell as self-oscillating heat engine , 2015 .

[106]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[107]  J. G. Muga,et al.  Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. , 2009, Physical review letters.

[108]  A. Lenard Thermodynamical proof of the Gibbs formula for elementary quantum systems , 1978 .

[109]  Giuliano Benenti,et al.  Fundamental aspects of steady-state conversion of heat to work at the nanoscale , 2016, 1608.05595.

[110]  Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[111]  R. Zambrini,et al.  Irreversible work and inner friction in quantum thermodynamic processes. , 2014, Physical review letters.

[112]  Ronnie Kosloff,et al.  Quantum refrigerators and the third law of thermodynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  G. Crooks On Measures of Entropy and Information , 2015 .

[114]  Leo Szilard,et al.  Über die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen , 1925 .

[115]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[116]  W. Nernst Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes , 1918 .

[117]  F. Benatti,et al.  Violations of the second law of thermodynamics by a non-completely positive dynamics , 2014, 1408.4589.

[118]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[119]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[120]  W. Schieve,et al.  On entropy production in a stochastic model of open systems , 1977 .

[121]  D. W. Robinson,et al.  Equilibrium states models in quantum statistical mechanics , 1997 .

[122]  T. Long,et al.  RÉFLEXIONS SUR LA PUISSANCE MOTRICE DU FEU, ET SUR LES MACHINES PROPRES A DÉVELOPPER CETTE PUISSANCE. , 1903 .

[123]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[124]  Nahuel Freitas,et al.  Fundamental limits for cooling of linear quantum refrigerators. , 2016, Physical review. E.

[125]  G. Kurizki,et al.  Work and energy gain of heat-pumped quantized amplifiers , 2013, 1306.1472.

[126]  E. Davies,et al.  Markovian master equations , 1974 .

[127]  P. Salamon,et al.  Principles of control thermodynamics , 2001 .

[128]  R. Clausius,et al.  Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen , 1850 .

[129]  Ronnie Kosloff,et al.  A quantum mechanical open system as a model of a heat engine , 1984 .

[130]  S. Rice,et al.  The influence of quantization on the onset of chaos in Hamiltonian systems: The Kolmogorov entropy interpretation , 1981 .

[131]  M. Paternostro,et al.  More bang for your buck: Super-adiabatic quantum engines , 2013, Scientific Reports.

[132]  G. Lindblad Brownian motion of a quantum harmonic oscillator , 1976 .

[133]  Paul Skrzypczyk,et al.  The smallest refrigerators can reach maximal efficiency , 2010, 1009.0865.

[134]  A. Allahverdyan,et al.  Work extremum principle: structure and function of quantum heat engines. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Jianshu Cao,et al.  Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective , 2015, 1508.04708.

[136]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[137]  D. Tannor,et al.  Three-level systems as amplifiers and attenuators: a thermodynamic analysis. , 2007, Physical review letters.

[138]  L. Hove Von Neumann’s contributions to quantum theory , 1958 .

[139]  Ronnie Kosloff,et al.  Quantum Flywheel , 2016, 1602.04322.

[140]  Gerardo Adesso,et al.  Testing the Validity of the 'Local' and 'Global' GKLS Master Equations on an Exactly Solvable Model , 2017, Open Syst. Inf. Dyn..

[141]  On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fixthem , 2017 .

[142]  J. Eisert,et al.  Strong Coupling Corrections in Quantum Thermodynamics. , 2017, Physical review letters.

[143]  V. Alba Eigenstate thermalization hypothesis and integrability in quantum spin chains , 2014, 1409.6096.

[144]  Dvira Segal,et al.  Minimal model of a heat engine: information theory approach. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[145]  M. Plenio,et al.  Non-additive dissipation in open quantum networks out of equilibrium , 2017, 1708.05574.

[146]  Helmut Ritsch,et al.  Breaking the Carnot limit without violating the second law: A thermodynamic analysis of off-resonant quantum light generation , 2013 .

[147]  Dariusz Chruscinski,et al.  A Brief History of the GKLS Equation , 2017, Open Syst. Inf. Dyn..

[148]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[149]  J. Pekola Towards quantum thermodynamics in electronic circuits , 2015, Nature Physics.

[150]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[151]  Robert Alicki,et al.  Markovian master equation and thermodynamics of a two-level system in a strong laser field. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  Gershon Kurizki,et al.  Universal thermodynamic limit of quantum engine efficiency , 2017 .

[153]  Yoshinori Takahashi,et al.  A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations , 1977 .

[154]  W. Nernst Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen , 1906 .

[155]  J. E. Geusic,et al.  Three Level Spin Refrigeration and Maser Action at 1500 mc/sec , 1959 .

[156]  John D. Norton,et al.  Eaters of the Lotus: Landauer's Principle and the Return of Maxwell's Demon , 2005 .

[157]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[158]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[159]  A. Nitzan,et al.  Quantum thermodynamics of the driven resonant level model , 2015, 1511.03276.

[160]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[161]  K. Kraus General state changes in quantum theory , 1971 .

[162]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[163]  A. T. Rezakhani,et al.  Correlations in quantum thermodynamics: Heat, work, and entropy production , 2016, Scientific Reports.

[164]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[165]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[166]  Yijing Yan,et al.  Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. , 2007, The Journal of chemical physics.

[167]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[168]  David Gelbwaser-Klimovsky,et al.  Non-equilibrium quantum heat machines , 2015, 1507.01660.

[169]  Herbert Spohn,et al.  Open quantum systems with time-dependent Hamiltonians and their linear response , 1978 .

[170]  Robert Alicki,et al.  A thermodynamic cycle for the solar cell , 2016, 1606.03819.

[171]  Peter Hanggi,et al.  Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator , 1997 .

[172]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[173]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[174]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[175]  Ronnie Kosloff,et al.  Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[176]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[177]  Alán Aspuru-Guzik,et al.  Strongly Coupled Quantum Heat Machines. , 2015, The journal of physical chemistry letters.

[178]  Ronnie Kosloff,et al.  Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration , 2016, Entropy.

[179]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[180]  P. Feyerabend,et al.  Criticism and the Growth of Knowledge: Consolations for the Specialist , 1970 .

[181]  P. Landsberg A comment on Nernst's theorem , 1989 .

[182]  Gershon Kurizki,et al.  On the operation of machines powered by quantum non-thermal baths , 2015, 1508.06519.

[183]  Jianshu Cao,et al.  Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics , 2016, 1612.00533.

[184]  M. Esposito Stochastic thermodynamics under coarse graining. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[185]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[186]  D. Tannor,et al.  Phase space approach to theories of quantum dissipation , 1997 .

[187]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2015, 1511.06994.

[188]  G. Lindblad On the existence of quantum subdynamics , 1996 .

[189]  A. Frigerio Quantum dynamical semigroups and approach to equilibrium , 1977 .

[190]  Massimiliano Esposito,et al.  Efficiency at maximum power of low-dissipation Carnot engines. , 2010, Physical review letters.

[191]  Gershon Kurizki,et al.  Quantum engine efficiency bound beyond the second law of thermodynamics , 2017, Nature Communications.

[192]  Feldmann,et al.  Performance of discrete heat engines and heat pumps in finite time , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[193]  Franco Nori,et al.  Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[194]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[195]  J M Gordon,et al.  Quantum thermodynamic cooling cycle. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.