Simulation optimization based on Taylor Kriging and evolutionary algorithm

This paper develops a simulation optimization algorithm based on Taylor Kriging and evolutionary algorithm (SOAKEA) for simulation models with high computational expenses. In SOAKEA, an evolutionary algorithm is used to search for optimal solutions of a simulation model, and Taylor Kriging temporarily serves as a surrogate fitness function of this evolutionary algorithm to evaluate solutions. Taylor Kriging is an enhanced version of Kriging where Taylor expansion is used to approximate the drift function of Kriging, and it improves the interpolation accuracy of Kriging. The structures and properties of SOAKEA are analyzed. A combination correction strategy is created, and it effectively reduces the computational expense of SOAKEA. The empirical comparison of SOAKEA with some other well-known metaheuristics is conducted, and the proposed SOAKEA uses particle swam optimization, a population-based evolutionary algorithm, to solve four simulation problems based on multimodal benchmark functions. The results indicate that SOAKEA has significant advantages in optimizing simulation models with high computational expenses.

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Jack P. C. Kleijnen,et al.  Robustness of Kriging when interpolating in random simulation with heterogeneous variances: Some experiments , 2005, Eur. J. Oper. Res..

[4]  Jack P. C. Kleijnen,et al.  Kriging for interpolation in random simulation , 2003, J. Oper. Res. Soc..

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[7]  Alice E. Smith,et al.  Dual Kriging: An Exploratory Use in Economic Metamodeling , 2005 .

[8]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[9]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  Russell R. Barton,et al.  Metamodeling: a state of the art review , 1994, Proceedings of Winter Simulation Conference.

[12]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[13]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[14]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  Heping Liu,et al.  A Novel Particle Swarm Optimizer with Kriging Models , 2007 .

[16]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[17]  Shu-Kai S. Fan,et al.  A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search , 2006, Comput. Ind. Eng..

[18]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[19]  Peter Winker Optimization Heuristics in Econometrics : Applications of Threshold Accepting , 2000 .

[20]  Jack P. C. Kleijnen,et al.  Application-driven sequential designs for simulation experiments: Kriging metamodelling , 2004, J. Oper. Res. Soc..

[21]  Alain Ratle,et al.  Kriging as a surrogate fitness landscape in evolutionary optimization , 2001, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[22]  Heping Liu,et al.  Prediction of wind speed time series using modified Taylor Kriging method , 2010 .

[23]  F. H. Branin Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .

[24]  Yew-Soon Ong,et al.  Hierarchical surrogate-assisted evolutionary optimization framework , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[25]  Heping Liu,et al.  Prediction of wireless network connectivity using a Taylor Kriging approach , 2011, Int. J. Adv. Intell. Paradigms.

[26]  Heping Liu,et al.  Taylor Kriging metamodeling for simulation interpolation, sensitivity analysis and optimization , 2009 .

[27]  Heping Liu Cost Estimation and Sensitivity Analysis on Cost Factors: A Case Study on Taylor Kriging, Regression and Artificial Neural Networks , 2010 .

[28]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[29]  James Kennedy,et al.  The Behavior of Particles , 1998, Evolutionary Programming.

[30]  Rainer Laur,et al.  Stopping Criteria for a Constrained Single-Objective Particle Swarm Optimization Algorithm , 2007, Informatica.

[31]  Li Pheng Khoo,et al.  Integration of Response Surface Methodology with Genetic Algorithms , 2001 .

[32]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[33]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[34]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .

[35]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[36]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  Max D. Morris,et al.  The spatial correlation function approach to response surface estimation , 1992, WSC '92.

[39]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[40]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[41]  Andy J. Keane,et al.  A Knowledge-Based Approach To Response Surface Modelling in Multifidelity Optimization , 2003, J. Glob. Optim..

[42]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).