A fully integrated 0.5-5.5 GHz CMOS distributed amplifier

A fully integrated 0.5-5.5-GHz CMOS-distributed amplifier is presented. The amplifier is a four stage design fabricated in a standard 0.6-/spl mu/m three-layer metal digital-CMOS process. The amplifier has a unity-gain cutoff frequency of 5.5 GHz, and a gain of 6.5 dB, with a gain flatness of /spl plusmn/1.2 dB over the 0.5-4 GHz band. Input and output are matched to 50 /spl Omega/, with worst-case return losses on the input and output of -7 and -10 dB, respectively. Power dissipation is 83.4 mW from a 3.0 V supply, input-referred 1-dB compression point varies from +6 dBm at 1 GHz to 8.8 dBm at 5 GHz. From a circuit standpoint, the fully integrated nature of the amplifier on the given substrate results in a heavily parasitic-laden design. Discussion emphasis is therefore placed on the practical design, modeling, and CAD optimization techniques used in the design process.

[1]  Georges Gielen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989 .

[2]  D. J. Allstot,et al.  CMOS distributed amplifier design using CAD optimization techniques , 1999, 1999 Southwest Symposium on Mixed-Signal Design (Cat. No.99EX286).

[3]  S. N. Prasad,et al.  Power-bandwidth considerations in the design of MESFET distributed amplifiers , 1988 .

[4]  Walter H. Ku,et al.  An integrated CMOS distributed amplifier utilizing packaging inductance , 1997 .

[5]  B. Kleveland,et al.  Monolithic CMOS distributed amplifier and oscillator , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[6]  H. Greenhouse,et al.  Design of Planar Rectangular Microelectronic Inductors , 1974 .

[7]  J. Long,et al.  The modeling, characterization, and design of monolithic inductors for silicon RF IC's , 1997, IEEE J. Solid State Circuits.

[8]  K. R. Gleason,et al.  A DC-12 GHz monolithic GaAsFET distributed amplifier , 1982 .

[9]  D.J. Allstot,et al.  Fully-integrated CMOS RF amplifiers , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[10]  K. B. Niclas,et al.  The Declining Drain Line Lengths Circuit--A Computer Derived Design Concept Applied to a 2 26.5-GHz Distributed Amplifier , 1986 .

[11]  Thomas Wong,et al.  Fundamentals of distributed amplification , 1993 .

[12]  Ioannis Pitas Optimization and adaptation of discrete-valued digital filter parameters by simulated annealing , 1994, IEEE Trans. Signal Process..

[13]  Michiel Steyaert,et al.  A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors , 1997, IEEE J. Solid State Circuits.

[14]  T. R. Kritzer,et al.  On Theory and Performance of Solid-State Microwave Distributed Amplifiers , 1983 .

[15]  L. D. Reynolds,et al.  A Monolithic GaAs 1-13-GHz Traveling-Wave Amplifier , 1982 .

[16]  Patrick Siarry,et al.  Circuit performance optimization and model fitting based on simulated annealing , 1992 .

[17]  J. D. Wilson A simulated annealing algorithm for optimizing RF power efficiency in coupled-cavity traveling-wave tubes , 1997 .

[18]  W.R. Hewlett,et al.  Distributed Amplification , 1948, Proceedings of the IRE.

[19]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[20]  Ravi Gupta Design and computer-aided optimization of RF CMOS power amplifiers , 1998 .

[21]  Brian M. Ballweber Design and computer aided optimization of a fully integrated CMOS RF distributed amplifier , 1998 .