Simple discovery of bacterial biocatalysts from environmental samples through functional metaproteomics

[1]  Santosh Keisam,et al.  Quantifying the biases in metagenome mining for realistic assessment of microbial ecology of naturally fermented foods , 2016, Scientific Reports.

[2]  Stephan Fuchs,et al.  Soil and leaf litter metaproteomics—a brief guideline from sampling to understanding , 2016, FEMS microbiology ecology.

[3]  D. Le Paslier,et al.  Back to the Future of Soil Metagenomics , 2016, Front. Microbiol..

[4]  U. Stingl,et al.  Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. , 2015, Biotechnology advances.

[5]  L. Leichert,et al.  A combined bioinformatics and functional metagenomics approach to discovering lipolytic biocatalysts , 2015, Front. Microbiol..

[6]  Paul Wilmes,et al.  A decade of metaproteomics: Where we stand and what the future holds , 2015, Proteomics.

[7]  Jennifer M. Fettweis,et al.  The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies , 2015, BMC Microbiology.

[8]  Mariana Benítez,et al.  Ecological perspectives on synthetic biology: insights from microbial population biology , 2015, Front. Microbiol..

[9]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[10]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[11]  Andrew R. Jones,et al.  ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination , 2014, Nature Biotechnology.

[12]  Dagmar H. Leary,et al.  Which metaproteome? The impact of protein extraction bias on metaproteomic analyses. , 2013, Molecular and cellular probes.

[13]  K. Jaeger,et al.  Structural and Functional Characterisation of TesA - A Novel Lysophospholipase A from Pseudomonas aeruginosa , 2013, PloS one.

[14]  Emanuel Schmid,et al.  Soil metaproteomics – Comparative evaluation of protein extraction protocols , 2012, Soil biology & biochemistry.

[15]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[16]  R. Daniel,et al.  Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. , 2011, FEMS microbiology ecology.

[17]  K. Nicolaou,et al.  Proteomic Signature of Fatty Acid Biosynthesis Inhibition Available for In Vivo Mechanism-of-Action Studies , 2011, Antimicrobial Agents and Chemotherapy.

[18]  K. Jaeger,et al.  Probing Enzyme Promiscuity of SGNH Hydrolases , 2010, Chembiochem : a European journal of chemical biology.

[19]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[20]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[21]  K. Marcus,et al.  Phosphorylation and Kinetics of Mammalian Cytochrome c Oxidase* , 2008, Molecular & Cellular Proteomics.

[22]  D. Benndorf,et al.  Functional metaproteome analysis of protein extracts from contaminated soil and groundwater , 2007, The ISME Journal.

[23]  P. Wilmes,et al.  The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. , 2004, Environmental microbiology.

[24]  S. Giovannoni,et al.  The uncultured microbial majority. , 2003, Annual review of microbiology.

[25]  S. Kauppinen,et al.  Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. , 2000, Structure.

[26]  J. Handelsman,et al.  Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. , 1998, Chemistry & biology.

[27]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[28]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[29]  G. P. Manchenko,et al.  Handbook of Detection of Enzymes on Electrophoretic Gels , 1994 .

[30]  M. Hecker,et al.  Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. , 1993, Journal of general microbiology.

[31]  I. Roberts Hydrolysis of 4-methylumbelliferyl butyrate: A convenient and sensitive fluorescent assay for lipase activity , 1985, Lipids.

[32]  J. Ogawa,et al.  Microbial enzymes: new industrial applications from traditional screening methods. , 1999, Trends in Biotechnology.