Carbon enters silica forming a cristobalite-type CO2–SiO2 solid solution

[1]  J. Haines,et al.  Correspondence: Reply to ‘Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature' , 2016, Nature Communications.

[2]  A. Kavner,et al.  Correspondence: Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature , 2016, Nature Communications.

[3]  P. Beck,et al.  Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline , 2013, Journal of synchrotron radiation.

[4]  S. Sen,et al.  Carbon substitution for oxygen in silicates in planetary interiors , 2013, Proceedings of the National Academy of Sciences.

[5]  J. Haines,et al.  High-pressure synthesis of a polyethylene/zeolite nano-composite material , 2013, Nature Communications.

[6]  S. Scandolo,et al.  Partially collapsed cristobalite structure in the non molecular phase V in CO2 , 2012, Proceedings of the National Academy of Sciences.

[7]  A. Salamat,et al.  Structure of polymeric carbon dioxide CO2-V. , 2012, Physical review letters.

[8]  S. Wells,et al.  Flexibility windows and compression of monoclinic and orthorhombic silicalites , 2012 .

[9]  J. Haines,et al.  Enhanced mechanical strength of zeolites by adsorption of guest molecules. , 2011, Physical chemistry chemical physics : PCCP.

[10]  R. Hemley,et al.  Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle , 2011 .

[11]  J. Haines,et al.  Silicon carbonate phase formed from carbon dioxide and silica under pressure , 2011, Proceedings of the National Academy of Sciences.

[12]  R. Downs,et al.  New insights into the high-pressure polymorphism of SiO2 cristobalite , 2011, PCM 2011.

[13]  J. Haines,et al.  Deactivation of pressure-induced amorphization in silicalite SiO2 by insertion of guest species. , 2010, Journal of the American Chemical Society.

[14]  S. A. Grudinkin,et al.  Raman Investigation of Different Polytypes in SiC Thin Films Grown by Solid-Gas Phase Epitaxy on Si (111) and 6H-SiC Substrates , 2010 .

[15]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 410 GPa , 2010 .

[16]  F. Gorelli,et al.  Constraints on the phase diagram of nonmolecular CO 2 imposed by infrared spectroscopy , 2009 .

[17]  J. Haines,et al.  Topologically ordered amorphous silica obtained from the collapsed siliceous zeolite, silicalite-1-F: a step toward "perfect" glasses. , 2009, Journal of the American Chemical Society.

[18]  Yanming Ma,et al.  Transparent dense sodium , 2009, Nature.

[19]  Yanming Ma,et al.  Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth's lower mantle , 2008 .

[20]  R. Rousseau,et al.  Mixed threefold and fourfold carbon coordination in compressed CO2. , 2008, Physical review letters.

[21]  Govind,et al.  SixC1−xO2 alloys: A possible route to stabilize carbon-based silica-like solids? , 2007 .

[22]  F. Gorelli,et al.  High pressure solid state chemistry of carbon dioxide. , 2006, Chemical Society reviews.

[23]  P. Loubeyre,et al.  Observation of an O8 molecular lattice in the ɛ phase of solid oxygen , 2006, Nature.

[24]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 310GPa , 2006 .

[25]  G. Ruocco,et al.  Amorphous silica-like carbon dioxide , 2006, Nature.

[26]  Liping Huang,et al.  Transformation pathways of silica under high pressure , 2006, Nature materials.

[27]  Reinhard Boehler,et al.  Single-bonded cubic form of nitrogen , 2004, Nature materials.

[28]  H. Mao,et al.  In situ high P-T Raman spectroscopy and laser heating of carbon dioxide. , 2004, The Journal of chemical physics.

[29]  L. Dubrovinsky,et al.  A class of new high-pressure silica polymorphs , 2004 .

[30]  J. Tse,et al.  Collapsing cristobalitelike structures in silica analogues at high pressure. , 2003, Physical review letters.

[31]  L. Dubrovinsky,et al.  In situ characterization of phase transitions in cristobalite under high pressure by Raman spectroscopy and X-ray diffraction , 2001 .

[32]  J. Haines,et al.  Phosphorus oxynitride PON, a silica analogue: structure and compression of the cristobalite-like phase; P –T phase diagram , 2001 .

[33]  J. Tse,et al.  Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite , 2001 .

[34]  John K. Tomfohr,et al.  Investigation of hardness in tetrahedrally bonded nonmolecular CO2 solids by density-functional theory , 2000 .

[35]  Johansson,et al.  Theoretical investigation of high pressure phases of carbon dioxide , 2000, Physical review letters.

[36]  John K. Tomfohr,et al.  Rigid intertetrahedron angular interaction of nonmolecular carbon dioxide solids , 2000 .

[37]  C. Cavazzoni,et al.  Pressure-induced solid carbonates from molecular CO2 by computer simulation , 1999, Science.

[38]  Iota,et al.  Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures and temperatures , 1999, Science.

[39]  M. Hanfland,et al.  Pressure-induced landau-type transition in stishovite , 1998, Science.

[40]  R. Downs,et al.  The pressure behavior of alpha cristobalite , 1994 .

[41]  J. Shu,et al.  High-pressure crystal chemistry of stishovite , 1990 .

[42]  F. Birch,et al.  Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high‐temperature domain , 1986 .

[43]  B. Hyde,et al.  Cristobalites and topologically-related structures , 1976 .

[44]  H. Böhm The cristobalite modification of GeO2 , 1968, Naturwissenschaften.

[45]  M. Marques,et al.  First-principles study of structure and stability in Si–C–O-based materials , 2012, Theoretical Chemistry Accounts.

[46]  R. Downs,et al.  New insights into the high-pressure polymorphism of SiO 2 cristobalite , 2011 .

[47]  Stefano de Gironcoli,et al.  O 2 alloys : A possible route to stabilize carbon-based silica-like solids ? , 2007 .

[48]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[49]  Russell J. Hemley,et al.  High-pressure behavior of silica , 1994 .