Sensor Technologies and Simultaneous Localization and Mapping (SLAM)

Abstract This paper presents a comprehensive review on sensor modalities currently in used for solving the Simultaneous Localization and Mapping (SLAM) problem. The review focuses on SLAM for mobile robots in a variety of environments. The strengths and weaknesses of acoustic modality sensors such as ultrasonic and sonar sensors, laser range finders, visual sensors such as stereo vision sensors, and RGB-D sensors like the Microsoft Kinect and the Asus Xtion Pro Live are compared based on current usage in published research papers. Based on this review, we propose that RGB-D sensors have unique advantages which make them particularly suitable for SLAM problems.

[1]  Daniel Maier,et al.  Real-time navigation in 3D environments based on depth camera data , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[2]  Dilbag Singh,et al.  Improved occupancy grid mapping in specular environment , 2012, Robotics Auton. Syst..

[3]  George K. I. Mann,et al.  Development of a relative localization scheme for ground-aerial multi-robot systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Arturo Gil,et al.  Multi-robot visual SLAM using a Rao-Blackwellized particle filter , 2010, Robotics Auton. Syst..

[5]  Frank Dellaert,et al.  Probabilistic structure matching for visual SLAM with a multi-camera rig , 2010, Comput. Vis. Image Underst..

[6]  Max Q.-H. Meng,et al.  Study on distance measurement for NAO humanoid robot , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[7]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[8]  Pedro Arias,et al.  Metrological evaluation of Microsoft Kinect and Asus Xtion sensors , 2013 .

[9]  Taro Suzuki,et al.  Development of a SIFT based monocular EKF-SLAM algorithm for a small unmanned aerial vehicle , 2011, SICE Annual Conference 2011.

[10]  Simon Lacroix,et al.  Vision-Based SLAM: Stereo and Monocular Approaches , 2007, International Journal of Computer Vision.

[11]  Vladlen Koltun,et al.  Dense scene reconstruction with points of interest , 2013, ACM Trans. Graph..

[12]  Amelia Wong Azman,et al.  Indoor UAV Positioning Using Stereo Vision Sensor , 2012 .

[13]  Kurt Konolige,et al.  Change Their Perception: RGB-D for 3-D Modeling and Recognition , 2013, IEEE Robotics & Automation Magazine.

[14]  Ronald Lumia,et al.  A pseudo-interferometric laser range finder for robot applications , 1989, IEEE Trans. Robotics Autom..

[15]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[16]  Andreas Geiger,et al.  Visual SLAM for autonomous ground vehicles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[17]  Simon Lacroix,et al.  High resolution terrain mapping using low attitude aerial stereo imagery , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[19]  Tom Drummond,et al.  Edge landmarks in monocular SLAM , 2009, Image Vis. Comput..

[20]  Le Yu,et al.  A new SLAM method based on SVM-AEKF for AUV , 2011, OCEANS'11 MTS/IEEE KONA.

[21]  Antoni Burguera,et al.  Robust scan matching localization using ultrasonic range finders , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Songmin Jia,et al.  Range scan matching and Particle Filter based mobile robot SLAM , 2010, 2010 IEEE International Conference on Robotics and Biomimetics.

[23]  Ling Shao,et al.  Enhanced Computer Vision With Microsoft Kinect Sensor: A Review , 2013, IEEE Transactions on Cybernetics.

[24]  Francisco Angel Moreno,et al.  Stereo vision specific models for particle filter-based SLAM , 2009, Robotics Auton. Syst..

[25]  Bo Wang,et al.  Polarimetric characteristics of ships on RADARSAT-2 data , 2011, OCEANS 2011 IEEE - Spain.

[26]  Sebastian Thrun,et al.  Learning to Segment and Track in RGBD , 2012, WAFR.

[27]  Antonio Bandera,et al.  Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor , 2011, Sensors.

[28]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[29]  Antoni Burguera,et al.  Sonar Sensor Models and Their Application to Mobile Robot Localization , 2009, Sensors.

[30]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.