Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane.

[1]  E. Carafoli The interplay of mitochondria with calcium: an historical appraisal. , 2012, Cell calcium.

[2]  P. Bernardi,et al.  The permeability transition pore as a Ca2+ release channel: New answers to an old question , 2012, Cell calcium.

[3]  T. Pozzan,et al.  Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities , 2012, Pflügers Archiv - European Journal of Physiology.

[4]  S. Sheu,et al.  Molecular identities of mitochondrial Ca2+ influx mechanism: Updated passwords for accessing mitochondrial Ca2+-linked health and disease , 2012, The Journal of general physiology.

[5]  J. McCarron,et al.  Mitochondrial organization and Ca2+ uptake. , 2012, Biochemical Society transactions.

[6]  V. Pinelis,et al.  Mitochondrial lipid pore in the mechanism of glutamate-induced calcium deregulation of brain neurons , 2012, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[7]  Tullio Pozzan,et al.  After half a century mitochondrial calcium in‐ and efflux machineries reveal themselves , 2011, The EMBO journal.

[8]  Feng Gao,et al.  Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals , 2011, Cell Research.

[9]  I. Ambudkar,et al.  Faculty Opinions recommendation of A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. , 2011 .

[10]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[11]  C. Mammucari,et al.  Molecules and roles of mitochondrial calcium signaling. , 2011, BioFactors.

[12]  Shin-Young Ryu,et al.  Single Channel Characterization of the Mitochondrial Ryanodine Receptor in Heart Mitoplasts* , 2011, The Journal of Biological Chemistry.

[13]  Y. Miki,et al.  Recent progress in phospholipase A₂ research: from cells to animals to humans. , 2011, Progress in lipid research.

[14]  W. Graier,et al.  Uncoupling protein 3 adjusts mitochondrial Ca2+ uptake to high and low Ca2+ signals , 2010, Cell calcium.

[15]  A. Starkov,et al.  The molecular identity of the mitochondrial Ca2+ sequestration system , 2010, The FEBS journal.

[16]  N. Demaurex,et al.  Calcium uptake mechanisms of mitochondria. , 2010, Biochimica et biophysica acta.

[17]  W. Graier,et al.  Mitochondrial Ca2+ channels: Great unknowns with important functions , 2010, FEBS letters.

[18]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[19]  D. Clapham,et al.  Genome-Wide RNAi Screen Identifies Letm1 as a Mitochondrial Ca2+/H+ Antiporter , 2009, Science.

[20]  P. Distefano,et al.  Genome-Wide RNAi Screen Identifies Letm 1 as a Mitochondrial Ca 2 + / H + Antiporter , 2009 .

[21]  M. Mattson,et al.  Superoxide Flashes in Single Mitochondria , 2008, Cell.

[22]  R. Rizzuto,et al.  Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. , 2008, Cell calcium.

[23]  K. Belosludtsev,et al.  Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin a-insensitive pore , 2007, Journal of bioenergetics and biomembranes.

[24]  E. Shlyapnikova,et al.  Ca2+-Induced Phase Separation in the Membrane of Palmitate-Containing Liposomes and Its Possible Relation to Membrane Permeabilization , 2007, Journal of Membrane Biology.

[25]  C. Leslie,et al.  Identification of the Expressed Form of Human Cytosolic Phospholipase A2β (cPLA2β) , 2006, Journal of Biological Chemistry.

[26]  E. Carafoli,et al.  A historical review of cellular calcium handling, with emphasis on mitochondria , 2005, Biochemistry (Moscow).

[27]  B. Khodorov Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. , 2004, Progress in biophysics and molecular biology.

[28]  M. Ovize,et al.  Formation of Palmitic Acid/Ca2+ Complexes in the Mitochondrial Membrane: A Possible Role in the Cyclosporin-Insensitive Permeability Transition , 2004, Journal of bioenergetics and biomembranes.

[29]  K. Belosludtsev,et al.  A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. , 2003, Biochimica et biophysica acta.

[30]  P. Louisot,et al.  Palmitic and Stearic Acids Bind Ca2+ with High Affinity and Form Nonspecific Channels in Black-Lipid Membranes. Possible Relation to Ca2+-Activated Mitochondrial Pores , 2001, Journal of bioenergetics and biomembranes.

[31]  P. M. Sokolove,et al.  Free fatty acid effects on mitochondrial permeability: an overview. , 2001, Archives of biochemistry and biophysics.

[32]  P. M. Sokolove,et al.  Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. , 2001, Archives of biochemistry and biophysics.

[33]  Kimberly,et al.  Effects of Phospholipase A 2 Inhibitors on Ruthenium Red-induced Ca 2 + Release from Mitochondria * , 2001 .

[34]  P. Louisot,et al.  Calcium-Binding Properties of the Mitochondrial Channel-Forming Hydrophobic Component , 2000, Journal of bioenergetics and biomembranes.

[35]  Paolo Bernardi,et al.  The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal , 1996, Journal of bioenergetics and biomembranes.

[36]  R. Ulrich,et al.  Strontium excitability of the inner mitochondrial membrane: regenerative strontium-induced strontium release. , 1995, Biochemistry and molecular biology international.

[37]  Antonov Vf,et al.  Lipid pores and stability of cell membranes , 1995 .

[38]  V. F. Antonov,et al.  [Lipid pores and stability of cell membranes]. , 1995, Vestnik Rossiiskoi akademii meditsinskikh nauk.

[39]  M. Baumann,et al.  Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers , 1994, Journal of bioenergetics and biomembranes.

[40]  Saris Ne Stimulation of phospholipase A2 activity in mitochondria by magnesium and polyamines. , 1994 .

[41]  N. Saris Stimulation of phospholipase A2 activity in mitochondria by magnesium and polyamines. , 1994, Magnesium research.

[42]  T. Penttilä,et al.  Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycorproteinT , 1993, Journal of bioenergetics and biomembranes.

[43]  G. Daum,et al.  Lipids of mitochondria. , 1985, Biochimica et biophysica acta.

[44]  H. Schmid,et al.  Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. , 1985, The Journal of biological chemistry.

[45]  Kondrashova Mn,et al.  Reversible changes in the volume of isolated mitochondria in the course of ion flux oscillations between the mitochondria and the medium , 1982 .

[46]  M. Kondrashova,et al.  [Reversible changes in the volume of isolated mitochondria in the course of ion flux oscillations between the mitochondria and the medium]. , 1982, Tsitologiia.

[47]  A. Lehninger,et al.  Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. , 1979, The Journal of biological chemistry.

[48]  Kargapolov Av Changes in the phospholipid content of intact mitochondria under mitochondrial swelling in hypotonic sucrose solutions , 1979 .

[49]  A. Kargapolov [Changes in the phospholipid content of intact mitochondria under mitochondrial swelling in hypotonic sucrose solutions]. , 1979, Биохимия.

[50]  J. Puskin,et al.  Evidence for more than one Ca2+ transport mechanism in mitochondria. , 1976, Biochemistry.

[51]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.