Image Flux Ratios of Gravitationally Lensed HS 0810+2554 with High-resolution Infrared Imaging

We report near simultaneous imaging using LMIRCam on the LBTI of the quadruply imaged lensed quasar HS 0810+2554 at wavelengths of 2.16, 3.7 and $4.78~\mu$m with a Full Width Half Max (FWHM) spatial resolution of $0^{\prime\prime}\!\!.13$, $0^{\prime\prime}\!\!.12$ and $0^{\prime\prime}\!\!.15$ respectively, comparable to HST optical imaging. In the $\rm{z} = 1.5$ rest frame of the quasar, the observed wavelengths correspond to 0.86, 1.48, and $1.91~\mu$m respectively. The two brightest images in the quad, A and B, are clearly resolved from each other with a separation of $0.187^{\prime\prime}$. The flux ratio of these two images (A/B) trends from 1.79 to 1.23 from 2.16 to $4.78~\mu$m. The trend in flux ratio is consistent with the $2.16~\mu$m flux originating from a small sized accretion disk in the quasar that experiences only microlensing. The excess flux above the contribution from the accretion disk at the two longer wavelengths originates from a larger sized region that experiences no microlensing. A simple model employing multiplicative factors for image B due to stellar microlensing $(m)$ and sub-structure millilensing $(M)$ is presented. The result is tightly constrained to the product $m\times M=1.79$. Given the observational errors, the 60\% probability contour for this product stretches from $m= 2.6$, $M = 0.69$ to $m= 1.79$, $M = 1.0$, where the later is consistent with microlensing only.

[1]  Institute for Advanced Study,et al.  Tests for Substructure in Gravitational Lenses , 2003, astro-ph/0302036.

[2]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[3]  G. Richards,et al.  MINING FOR DUST IN TYPE 1 QUASARS , 2014, 1412.7039.

[4]  C. Keeton,et al.  NEAR-INFRARED K AND L′ FLUX RATIOS IN SIX LENSED QUASARS , 2011, 1101.1917.

[5]  D. Sluse,et al.  Strong lensing reveals jets in a sub-microJy radio-quiet quasar , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  P. Schneider,et al.  Evidence for substructure in lens galaxies , 1997, astro-ph/9707187.

[7]  S. Dye,et al.  The WFCAM Science Archive , 2006, 0711.3593.

[8]  D. Sluse,et al.  Mid-infrared microlensing of accretion disc and dusty torus in quasars: Effects on flux ratio anomalies , 2013, 1303.1176.

[9]  P. Madau,et al.  Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos , 2001, astro-ph/0108224.

[10]  Jaxa,et al.  Subaru Mid-Infrared Imaging of the Quadruple Lenses PG 1115+080 and B1422+231: Limits on Substructure Lensing , 2005, astro-ph/0503487.

[11]  Ž. Ivezić,et al.  A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING , 2011, 1112.0679.

[12]  Probing Dark Matter Substructure in Lens Galaxies , 2001, astro-ph/0109499.

[13]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[14]  K. Enya,et al.  Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies , 2005, astro-ph/0511697.

[15]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[16]  Finite source effects in strong lensing: implications for the substructure mass scale , 2005, astro-ph/0502436.

[17]  C. Kochanek,et al.  THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS , 2011, 1104.2356.

[18]  L. Williams,et al.  The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses , 2017, 1712.07665.

[19]  B. Mennesson,et al.  Overview of LBTI: a multipurpose facility for high spatial resolution observations , 2016, Astronomical Telescopes + Instrumentation.

[20]  L. Moustakas,et al.  Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  V. Vaitheeswaran,et al.  The Large Binocular Telescope mid-infrared camera (LMIRcam): final design and status , 2010, Astronomical Telescopes + Instrumentation.

[22]  H. Hagen,et al.  Discovery of a new quadruply lensed QSO: HS 0810+2554 – A brighter twin to PG 1115+080 , 2002 .

[23]  C. Keeton,et al.  Substructure in the lens HE 0435-1223 , 2011, 1109.0548.

[24]  Models of the Giant Quadruple Quasar SDSS J1004+4112 , 2004, astro-ph/0409418.

[25]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[26]  Surface mass density of the Einasto family of dark matter haloes: are they Sersic-like? , 2010, 1112.3116.

[27]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[28]  C. Barache,et al.  The third release of the Large Quasar Astrometric Catalog (LQAC-3): a compilation of 321 957 objects , 2015 .

[29]  L. Williams,et al.  Understanding micro-image configurations in quasar microlensing , 2010, 1010.0006.

[30]  M. Eracleous,et al.  THE WIDE-ANGLE OUTFLOW OF THE LENSED z = 1.51 AGN HS 0810+2554 , 2016, 1603.05555.

[31]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[32]  S. Vegetti,et al.  The impact of baryonic physics on the subhalo mass function and implications for gravitational lensing , 2016, 1608.06938.

[33]  Liverpool John Moores University,et al.  Local Group galaxies emerge from the dark , 2014, 1412.2748.

[34]  Sergey E. Koposov,et al.  Gravitationally lensed quasars in Gaia: I. Resolving small-separation lenses , 2017, 1709.08976.

[35]  R. Crain,et al.  The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  M. Eracleous,et al.  MAGNIFIED VIEWS OF THE ULTRAFAST OUTFLOW OF THE z = 1.51 ACTIVE GALACTIC NUCLEUS HS 0810+2554 , 2014, 1401.4486.

[37]  Argelander-Institut fur Astronomie,et al.  Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing , 2015, 1508.05842.

[38]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[39]  A. Brooks,et al.  WHY BARYONS MATTER: THE KINEMATICS OF DWARF SPHEROIDAL SATELLITES , 2012, 1207.2468.

[40]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[41]  H. Takami,et al.  An infrared study of hot dust in quasars using prism spectrophotometry , 1993 .

[42]  P. Schneider,et al.  How well can cold dark matter substructures account for the observed radio flux-ratio anomalies , 2014, 1410.3282.

[43]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[44]  G. Stinson,et al.  NIHAO V: too big does not fail – reconciling the conflict between ΛCDM predictions and the circular velocities of nearby field galaxies , 2015, 1512.00453.

[45]  P. Schechter,et al.  Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points , 2002, astro-ph/0204425.