Electronic structure and transport in molecular and nanoscale electronics

Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical nature of electrons and dimensionality of systems play the critical roles in their electronic, magnetic and optical properties. Our first approach is based on Green's function method with ab initio quasiatomic orbitals within Landauer formalism. To efficiently and accurately apply Green's function method, we develop a minimal basis-set of quasiatomic orbitals from plane-wave density functional theory (DFT) results. This minimal basis-set resembles quasi-angular momentum characteristics in solid state systems and it further validates Slater's original idea of linear combinations of atomic orbitals. Based on their ab initio tight-binding matrices, the accuracy, efficiency and stability of our scheme are demonstrated by various examples, including band structure, Fermi surface, Miilliken charge, bond order, and quasiatomic-orbitals-projected band structure and quasiatomic-orbitals-projected Fermi surface. Remarkably these quasiatomic orbitals reveal the symmetry and chemical bonding nature of different molecular, surface and solid systems. With this minimal basis-set, quantum conductance and density of states of coherent electron transport are calculated by Green's function method in the Landauer formalism. Several molecular and nanoscale systems are investigated including atomic wires, benzene dithiolate, phenalenyl dithiolate and carbon nanotube with and without different types of defects. Conductance eigenchannel decomposition, phase-encoded conductance eigenchannel visualization, and local current mapping are applied to achieve deeper understandings of electron transport mechanism, including spin dependence, dimensionality dependence, defect dependence, and quantum loop current induced by time-reversal symmetry breaking. Our second approach naturally arises due to the fact that electron transport is an excited state process. Time-dependent density functional theory (TDDFT) is a fundamental approach to account for dynamical correlations of wave functions and correct band gap in DFT. In our second approach, we mainly focus on the mathematical formulation and algorithm development of TDDFT with ultrasoft pseudopotentials and projector augmented wave method. Calculated optical absorption spectrum gives correct positions and shapes of excitation peaks compared to experimental results and other TDDFT results with norm-conserving pseudopotentials. Our method is further applied to study Fermi electron transmission through benzene dithiolate molecular junction sandwiched by two gold chains. It is first verified that group velocity of Fermi electron in the gold chain obtained by TDDFT agrees with that from band structure theory. Then under rigid band and zero bias approximations, a tiny Fermi electron wave packet from the chain is injected into the molecular junction. Transmission coefficient evaluated after the scattering process is around 5%. This is in agreement with the result from Green's function method. The two methods also show similar characteristic propagation channel. This nice agreement verifies that Green's function approach based on DFT reaches the TDDFT result without dynamical electron correlations in the linear response region. With further development, our quasiatomic orbitals can serve as a minimal basisset to combine non-equilibrium Green's function and TDDFT together with GW quasi-particle corrections. The unified method will provide a more accurate and efficient way to explore various molecular and nanoscale electronic devices such as chemical sensor, electromechanical device, magnetic memory, and optical electronics. Thesis Supervisor: Sidney Yip Title: Professor of Nuclear Science and Engineering and Professor of Materials Science and Engineering

[1]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[2]  Lee,et al.  Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.

[3]  Resonant inelastic tunneling in molecular junctions , 2005, cond-mat/0510452.

[4]  K. Jacobsen,et al.  Four-atom period in the conductance of monatomic Al wires. , 2003, Physical review letters.

[5]  E. Koch,et al.  Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV , 1972 .

[6]  A. Troisi,et al.  Vibronic effects in off-resonant molecular wire conduction , 2003 .

[7]  H. Sakaki,et al.  Spontaneous spin polarization in quantum wires , 1994 .

[8]  M. Tuckerman,et al.  Ab initio molecular dynamics: concepts, recent developments, and future trends. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[10]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[11]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[12]  R. Baer,et al.  Ab initio study of the alternating current impedance of a molecular junction. , 2004, Journal of Chemical Physics.

[13]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[14]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[15]  Á. Rubio,et al.  Assessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theory , 2001, cond-mat/0102234.

[16]  Ballistic Transport in Artificial Nano-Circuits , 1998 .

[17]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[18]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[19]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000 .

[20]  Marco Buongiorno Nardelli,et al.  Electronic transport in extended systems: Application to carbon nanotubes , 1999 .

[21]  K. Ho,et al.  Environment-Dependent Tight-Binding Model for Molybdenum , 1998 .

[22]  Ju Li,et al.  Force-based many-body interatomic potential for ZrC , 2003 .

[23]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[24]  Flemming Besenbacher,et al.  Quantized conductance in relays , 1997 .

[25]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[26]  N. D. Lang ANOMALOUS DEPENDENCE OF RESISTANCE ON LENGTH IN ATOMIC WIRES , 1997 .

[27]  First-principles calculations of conductance within a plane wave basis set via non-orthogonal Wannier-type atomic orbitals , 2005, cond-mat/0507649.

[28]  M. Tuckerman,et al.  On-the-fly localization of electronic orbitals in Car-Parrinello molecular dynamics. , 2004, The Journal of chemical physics.

[29]  G Dearnaley,et al.  Electronic Structure and Properties of Solids: The Physics of the Chemical Bond , 1980 .

[30]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[31]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[32]  N. Marzari,et al.  Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes. , 2005, Physical review letters.

[33]  T. N. Todorov,et al.  Current-induced forces in atomic-scale conductors , 2000 .

[34]  Z. Zeng,et al.  Conductance oscillation and quantization in monatomic Al wires , 2006, cond-mat/0612450.

[35]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[36]  R. Resta Why are insulators insulating and metals conducting , 2002 .

[37]  R Lloyd Carroll,et al.  The genesis of molecular electronics. , 2002, Angewandte Chemie.

[38]  Antti-Pekka Jauho,et al.  Inelastic transport theory from first principles: Methodology and application to nanoscale devices , 2006, cond-mat/0611562.

[39]  R. Baer,et al.  Ab Initio Electrical Conductance of a Molecular Wire , 2003 .

[40]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.

[41]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[42]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[43]  John K. Tomfohr,et al.  Theoretical analysis of electron transport through organic molecules. , 2004, The Journal of chemical physics.

[44]  R. Gebauer,et al.  Ultrasoft pseudopotentials in time-dependent density-functional theory. , 2007, The Journal of chemical physics.

[45]  M. Paulsson,et al.  Inelastic transport through molecules: comparing first-principles calculations to experiments. , 2006, Nano letters.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Daniel S. Fisher,et al.  Relation between conductivity and transmission matrix , 1981 .

[49]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[50]  P. Blöchl,et al.  Projector augmented wave method:ab initio molecular dynamics with full wave functions , 2002, cond-mat/0201015.

[51]  J. C. Love,et al.  Architectures for Molecular Electronic Computers , 2002 .

[52]  Y. Meir,et al.  Magnetic impurity formation in quantum point contacts , 2006, Nature.

[53]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[54]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[55]  John C. Slater,et al.  Wave Functions for Impurity Levels , 1954 .

[56]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[57]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[58]  M. Tsukada,et al.  Quantum loop current in a C(60) molecular bridge. , 2001, Physical review letters.

[59]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[60]  N. Marzari,et al.  Exponential localization of Wannier functions in insulators. , 2006, Physical review letters.

[61]  Yuyuan Tian,et al.  Measuring single molecule conductance with break junctions. , 2006, Faraday discussions.

[62]  R. Dovesi,et al.  A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations , 2001 .

[63]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[64]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[65]  Sidney Yip,et al.  Time-dependent density functional theory with ultrasoft pseudopotentials: Real-time electron propagation across a molecular junction , 2006 .

[66]  A. Rubio,et al.  Time-dependent quantum transport: A practical scheme using density functional theory , 2005, cond-mat/0502391.

[67]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[68]  Flores,et al.  Electrochemical-potential variations across a constriction. , 1990, Physical review. B, Condensed matter.

[69]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[70]  Walter Kohn Analytic Properties of Bloch Waves and Wannier Functions , 1966 .

[71]  K. Jacobsen,et al.  Partly occupied Wannier functions. , 2004, Physical review letters.

[72]  Hubbard-U calculations for Cu from first-principle Wannier functions , 2001, cond-mat/0109303.

[73]  O. Sankey,et al.  Simple Estimates of the Electron Transport Properties of Molecules , 2002 .

[74]  R. Mattuck,et al.  A guide to Feynman diagrams in the many-body problem , 1976 .

[75]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[76]  The Origin of the Anomalous Superconducting Properties of MgB2 , 2002 .

[77]  Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure , 2003, cond-mat/0303180.

[78]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[79]  Kohn,et al.  Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory. , 1996, Physical review letters.

[80]  John K. Tomfohr,et al.  Reproducible Measurement of Single-Molecule Conductivity , 2001, Science.

[81]  R. Gebauer,et al.  Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy. , 2005, Physical review letters.

[82]  L N Pfeiffer,et al.  Spontaneous spin polarization in quantum point contacts. , 2006, Physical review letters.

[83]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[84]  Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. , 2006, Physical review letters.

[85]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[86]  C. Wang,et al.  Environment-Dependent Tight-Binding Potential Models , 1997 .

[87]  A. Jauho,et al.  Inelastic scattering and local heating in atomic gold wires. , 2004, Physical review letters.

[88]  A. Nitzan,et al.  Electron transmission through molecules and molecular interfaces. , 2001, Annual review of physical chemistry.

[89]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[90]  Mark A. Ratner,et al.  First-principles based matrix Green's function approach to molecular electronic devices: general formalism , 2002 .

[91]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[92]  K. Ho,et al.  An environment-dependent tight-binding potential for Si , 1999 .

[93]  J. Andréasson,et al.  Switching of a photochromic molecule on gold electrodes: single-molecule measurements , 2005 .

[94]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[95]  Jorge M. Seminario,et al.  Electron Transport through Single Molecules: Scattering Treatment Using Density Functional and Green Function Theories , 2001 .

[96]  P. Ordejón,et al.  TranSIESTA: A Spice for Molecular Electronics , 2003, Annals of the New York Academy of Sciences.

[97]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[98]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[99]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[100]  J. Davenport Editor , 1960 .

[101]  E. Tsymbal,et al.  Quantized magnetoresistance in atomic-size contacts. , 2007, Nature nanotechnology.

[102]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[103]  U. Waghmare,et al.  Localized orbital description of electronic structures of extended periodic metals, insulators, and confined systems: Density functional theory calculations , 2006 .

[104]  P. Avouris,et al.  Oscillatory Conductance of Carbon-Atom Wires , 1998 .

[105]  A. Becke Density-functional thermochemistry. , 1996 .

[106]  Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. , 2004, Physical review letters.

[107]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[108]  M. Buongiorno Nardelli,et al.  First-principles theory of correlated transport through nanojunctions. , 2005, Physical review letters.

[109]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[110]  C. H. Patterson,et al.  Vibronic contributions to charge transport across molecular junctions , 2004 .

[111]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[112]  J. Grossman,et al.  Linear-scaling quantum Monte Carlo calculations. , 2001, Physical review letters.

[113]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[114]  G. Stefanucci,et al.  Time-dependent quantum transport: An exact formulation based on TDDFT , 2004, cond-mat/0402094.

[115]  Electron-vibration interaction in transport through atomic gold wires , 2005, cond-mat/0508470.

[116]  Localization of Wannier functions for entangled energy bands , 2004, cond-mat/0409337.

[117]  Marco Buongiorno Nardelli,et al.  Ab initio transport properties of nanostructures from maximally localized Wannier functions , 2004 .

[118]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[119]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[120]  Xiaofan Luo,et al.  Molecular Electronics , 2009 .

[121]  D. M. Newns Self-Consistent Model of Hydrogen Chemisorption , 1969 .

[122]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[123]  John K. Tomfohr,et al.  Changes in the Electronic Properties of a Molecule When It Is Wired into a Circuit , 2002 .

[124]  Richard M. Martin,et al.  Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals , 2002 .

[125]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[126]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .

[127]  Manuel I. Marqués,et al.  Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes , 1997 .

[128]  K. Held,et al.  Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type. , 2006, Physical review letters.

[129]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[130]  Troy Van Voorhis,et al.  Simulating molecular conductance using real-time density functional theory , 2006 .

[131]  Harris,et al.  Quantized conductance of magnetoelectric subbands in ballistic point contacts. , 1988, Physical review. B, Condensed matter.

[132]  José Luis Costa-Krämer,et al.  CONDUCTANCE QUANTIZATION AT ROOM TEMPERATURE IN MAGNETIC AND NONMAGNETIC METALLIC NANOWIRES , 1997 .

[133]  Eldon Emberly,et al.  Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts , 1998 .

[134]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[135]  M. Tuckerman,et al.  Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics , 2004 .

[136]  M Pepper,et al.  Conductance Quantization at a Half-Integer Plateau in a Symmetric GaAs Quantum Wire , 2006, Science.

[137]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[138]  Vieira,et al.  Conductance steps and quantization in atomic-size contacts. , 1993, Physical review. B, Condensed matter.

[139]  Supriyo Datta,et al.  Unified description of molecular conduction: From molecules to metallic wires , 2001 .

[140]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[141]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[142]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[143]  H. Bethe,et al.  A Relativistic equation for bound state problems , 1951 .

[144]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[145]  D. Vanderbilt,et al.  Exponential decay properties of Wannier functions and related quantities. , 2001, Physical review letters.

[146]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[147]  J. Ihm,et al.  Ab initio pseudopotential method for the calculation of conductance in quantum wires , 1999 .

[148]  Electron transport through molecules: Self-consistent and non-self-consistent approaches , 2003, cond-mat/0311545.

[149]  M. Tsukada,et al.  The theory of microscopic current distribution in molecular bridge structures , 1999 .

[150]  Robert A. Evarestov,et al.  Wannier-type atomic orbitals for periodic systems , 2005 .

[151]  M. Ratner,et al.  Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. , 2004, Journal of Chemical Physics.

[152]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[153]  Yuyuan Tian,et al.  Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol , 2004 .

[154]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[155]  W. Watson,et al.  The Sodium and Potassium Absorption Bands , 1927 .

[156]  Orbital magnetization in periodic insulators. , 2005, Physical review letters.

[157]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[158]  K. Ho,et al.  Transferability of the slater-koster tight-binding scheme from an environment-dependent minimal-basis perspective , 2005 .

[159]  K. Ho,et al.  Highly localized quasiatomic minimal basis orbitals for Mo from ab initio calculations , 2007 .

[160]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[161]  J. Ruitenbeek,et al.  The signature of conductance quantization in metallic point contacts , 1995, Nature.

[162]  Kurt Stokbro,et al.  Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds , 2003 .

[163]  M. Platt,et al.  Atoms , 2009, Archives of Disease in Childhood.

[164]  J. Armstrong,et al.  The quantum spin-valve in cobalt atomic point contacts , 2005 .

[165]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[166]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[167]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[168]  A. Troisi,et al.  Modeling the Inelastic Electron Tunneling Spectra of Molecular Wire Junctions , 2005 .

[169]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[170]  Shih-I Chu,et al.  Time-dependent density-functional theory for strong-field multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation , 1998 .

[171]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[172]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[173]  E. Smela,et al.  Polaron-induced conformation change in single polypyrrole chain: An intrinsic actuation mechanism , 2005 .

[174]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[175]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[176]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[177]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[178]  Molecular transport calculations with Wannier functions , 2005, cond-mat/0501238.

[179]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[180]  Angel Rubio,et al.  Nonequilibrium GW approach to quantum transport in nano-scale contacts. , 2007, The Journal of chemical physics.

[181]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[182]  Muller,et al.  One-atom point contacts. , 1993, Physical review. B, Condensed matter.

[183]  Michele Parrinello,et al.  General and efficient algorithms for obtaining maximally localized Wannier functions , 2000 .

[184]  S. Latil,et al.  Mesoscopic transport in chemically doped carbon nanotubes. , 2004, Physical review letters.

[185]  M. Sancho,et al.  A nonorthogonal-basis calculation of the spectral density of surface states for the (100) and (110) faces of tungsten , 1985 .

[186]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. XI. Molecular Orbital Theory of NMR Chemical Shifts , 1971 .

[187]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[188]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[189]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[190]  Jun Yu Li,et al.  Electronic decay constant of carotenoid polyenes from single-molecule measurements. , 2005, Journal of the American Chemical Society.

[191]  A. D. Corso,et al.  Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials , 2004, cond-mat/0405433.

[192]  M. Ratner,et al.  Molecular Transport Junctions: Clearing Mists , 2007 .

[193]  K. Ho,et al.  Representation of electronic structures in crystals in terms of highly localized quasiatomic minimal basis orbitals , 2004 .

[194]  Lang,et al.  Resistance of atomic wires. , 1995, Physical review. B, Condensed matter.

[195]  Paul-Gerhard Reinhard,et al.  NONLINEAR ELECTRON DYNAMICS IN METAL CLUSTERS , 2000 .

[196]  H.-W. Lee,et al.  Towards unified understanding of conductance of stretched monatomic contacts , 2003 .

[197]  Theoretical principles of single-molecule electronics: A chemical and mesoscopic view , 2004, cond-mat/0410539.

[198]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[199]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[200]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[201]  J. Chelikowsky,et al.  TOPICAL REVIEW: Time-dependent density-functional calculations for the optical spectra of molecules, clusters, and nanocrystals , 2003 .

[202]  R. Nieminen,et al.  Electron transport through monovalent atomic wires , 2004 .

[203]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[204]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[205]  C. Nuckolls,et al.  A molecular switch based on potential-induced changes of oxidation state. , 2005, Nano letters.

[206]  M. Tsukada,et al.  A Novel Viewpoint for Source-drain Driven Current inside Triangular Nanographene : Close Relationship with Magnetic Current , 2004 .

[207]  Lee,et al.  Low-temperature transport through a quantum dot: The Anderson model out of equilibrium. , 1993, Physical review letters.

[209]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[210]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[211]  Michele Parrinello,et al.  Localized non-orthogonal orbitals in silicon , 2001 .

[212]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[213]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[214]  W. Kohn Construction of Wannier Functions and Applications to Energy Bands , 1973 .

[215]  S. Lindsay Molecular wires and devices: advances and issues. , 2006, Faraday discussions.

[216]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[217]  Eric J. Bylaska,et al.  New development of self-interaction corrected DFT for extended systems applied to the calculation of native defects in 3C–SiC , 2006 .

[218]  First-principles theoretical description of electronic transport including electron-electron correlation , 2005 .

[219]  Magnus Paulsson,et al.  Transmission eigenchannels from nonequilibrium Green's functions , 2007, cond-mat/0702295.

[220]  D. Stewart,et al.  Molecular transport junctions: asymmetry in inelastic tunneling processes. , 2005, The journal of physical chemistry. B.