Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas

PurposeDose escalations above 60 Gy based on MRI have not led to prognostic benefits in glioblastoma patients yet. With positron emission tomography (PET) using [18F]fluorethyl-L-tyrosine (FET), tumor coverage can be optimized with the option of regional dose escalation in the area of viable tumor tissue.Methods and materialsIn a prospective phase II study (January 2008 to December 2009), 22 patients (median age 55 years) received radiochemotherapy after surgery. The radiotherapy was performed as an MRI and FET-PET-based integrated-boost intensity-modulated radiotherapy (IMRT). The prescribed dose was 72 and 60 Gy (single dose 2.4 and 2.0 Gy, respectively) for the FET-PET- and MR-based PTV-FET(72 Gy) and PTV-MR(60 Gy). FET-PET and MRI were performed routinely for follow-up. Quality of life and cognitive aspects were recorded by the EORTC-QLQ-C30/QLQ Brain20 and Mini-Mental Status Examination (MMSE), while the therapy-related toxicity was recorded using the CTC3.0 and RTOG scores.ResultsMedian overall survival (OS) and disease-free survival (DFS) were 14.8 and 7.8 months, respectively. All local relapses were detected at least partly within the 95% dose volume of PTV-MR(60 Gy). No relevant radiotherapy-related side effects were observed (excepted alopecia). In 2 patients, a pseudoprogression was observed in the MRI. Tumor progression could be excluded by FET-PET and was confirmed in further MRI and FET-PET imaging. No significant changes were observed in MMSE scores and in the EORTC QLQ-C30/QLQ-Brain20 questionnaires.ConclusionOur dose escalation concept with a total dose of 72 Gy, based on FET-PET, did not lead to a survival benefit. Acute and late toxicity were not increased, compared with historical controls and published dose–escalation studies.ZusammenfassungZielSteigerungen der Strahlendosis über 60 Gy, basierend auf der MRT, führten bisher nicht zu einer Prognoseverbesserung bei Glioblastomen. Die [18F]Fluorethyl-L-Tyrosin (FET)-PET erlaubt eine optimierte Erfassung der Tumorausdehnung, womit die Option einer fokussierten Dosiserhöhung im Bereich viabler Tumorareale verbunden ist.Material und MethodenIn einer prospektiven Phase-II-Studie (2008–2009) erhielten 22 Glioblastom-Patienten eine Strahlenchemotherapie nach erfolgter Resektion. Die Bestrahlung erfolgte als Integrated-Boost-IMRT (IB-IMRT), basierend auf MRT- und postoperativer FET-PET-Bildgebung. Die Dosisverschreibung betrug 72 bzw. 60 Gy (ED 2,4 bzw. 2,0 Gy) für das FET-PET- bzw. MRT-basierte PTV-FET(72 Gy) bzw. PTV-MRT(60 Gy). Das Follow-Up basierte auf regelmäßigen FET-PET- sowie MRT-Untersuchungen. Lebensqualität und kognitive Aspekte wurden mittels EORTC-QLQ-C30 und QLQ-Brain20 sowie „Mini Mental Status“-Test (MMST) erfasst. Die Toxizitätserfassung erfolgte mittels CTC3.0- bzw. RTOG-Score.ErgebnisseGesamt- und rezidivfreies Überleben lagen bei 14,8 und 7,8 Monaten. Alle lokalen Rezidive lagen zumindest partiell innerhalb der 95%-Isodose des PTV-MRT(60 Gy). Höhergradige strahlentherapiespezifische Nebenwirkungen traten nicht auf. Bei 2 Patienten zeigte sich eine Pseudoprogression im MRT. Ein Tumorprogress wurde mittels FET-PET ausgeschlossen und durch weitere Bildgebung bestätigt.Hinsichtlich der Lebensqualität und Kognition zeigten sich im zeitlichen Verlauf keine signifikanten Veränderungen.SchlussfolgerungUnser Dosiseskalationskonzept mit bis zu 72 Gy, basierend auf der FET-PET, führte nicht zu einer Überlebensverbesserung. Eine Erhöhung der Toxizität oder eine signifikante Verschlechterung der Lebensqualität zeigte sich im Vergleich zur historischen Kontrolle nicht.

[1]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. , 2005, Brain : a journal of neurology.

[2]  K. Franz,et al.  Radiochemotherapy with temozolomide for patients with glioblastoma , 2011, Strahlentherapie und Onkologie.

[3]  K. Hamacher,et al.  Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. , 2002, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[4]  R. Sweeney,et al.  Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme , 2011, Strahlentherapie und Onkologie.

[5]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[6]  K. Walter,et al.  Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. , 2010, International journal of radiation oncology, biology, physics.

[7]  Gabriele Stoffels,et al.  Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. , 2011, International journal of radiation oncology, biology, physics.

[8]  G. Reifenberger,et al.  Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  J. Uhm Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group , 2010 .

[10]  H. Herzog,et al.  Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  Z. Moravek,et al.  18F-FET-PET-Based Dose Painting by Numbers with Protons , 2010, Strahlentherapie und Onkologie.

[12]  M. Walker,et al.  An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. , 1979, International journal of radiation oncology, biology, physics.

[13]  P. Wen,et al.  Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. , 1999, Journal of neurosurgery.

[14]  O. Ratib,et al.  Recurrence pattern after [(18)F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  A. Fiorentino,et al.  Single-Arm Phase II Study of Conformal Radiation Therapy and Temozolomide plus Fractionated Stereotactic Conformal Boost in High-Grade Gliomas , 2010, Strahlentherapie und Onkologie.

[16]  Morand Piert,et al.  Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[17]  M. Martel,et al.  Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. , 1999, International journal of radiation oncology, biology, physics.

[18]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  E. Alexander,et al.  Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. , 1978, Journal of neurosurgery.

[20]  R. Warnick,et al.  Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. , 2010, International journal of radiation oncology, biology, physics.

[21]  F. Heppner,et al.  Fractionated stereotactic radiotherapy boost after post-operative radiotherapy in patients with high-grade gliomas. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  J. Fowler The linear-quadratic formula and progress in fractionated radiotherapy. , 1989, The British journal of radiology.

[23]  James A. Purdy,et al.  Phase I three-dimensional conformal radiation dose escalation study in newly diagnosed glioblastoma: Radiation Therapy Oncology Group Trial 98-03. , 2009, International journal of radiation oncology, biology, physics.

[24]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. , 2006, Nuclear medicine and biology.

[25]  Maria Werner-Wasik,et al.  Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. , 2004, International journal of radiation oncology, biology, physics.

[26]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[27]  L. Bogner,et al.  A Biologically Adapted Dose-Escalation Approach, Demonstrated for 18F-FET-PET in Brain Tumors , 2008, Strahlentherapie und Onkologie.

[28]  G. Stoffels,et al.  Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison , 2009, Radiation oncology.

[29]  Benedick A Fraass,et al.  Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  M. Mehta,et al.  A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023 , 2006 .

[31]  U Oppitz,et al.  3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[32]  F. Floeth,et al.  Review article O-(2-( 18 F)fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications , 2006 .