Continuous dynamical decoupling and decoherence-free subspaces for qubits with tunable interaction

Protecting quantum states from the decohering effects of the environment is of great importance for the development of quantum computation devices and quantum simulators. Here, we introduce a continuous dynamical decoupling protocol that enables us to protect the entangling gate operation between two qubits from the environmental noise. We present a simple model that involves two qubits which interact with each other with a strength that depends on their mutual distance and generates the entanglement among them, as well as in contact with an environment. The nature of the environment, that is, whether it acts as an individual or common bath to the qubits, is also controlled by the effective distance of qubits. Our results indicate that the introduced continuous dynamical decoupling scheme works well in protecting the entangling operation. Furthermore, under certain circumstances, the dynamics of the qubits naturally led them into a decoherence-free subspace which can be used complimentary to the continuous dynamical decoupling.

[1]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[2]  Nicolas Boulant,et al.  Experimental Concatenation of Quantum Error Correction with Decoupling , 2002, Quantum Inf. Process..

[3]  Daniel A. Lidar,et al.  Rigorous bounds on the performance of a hybrid dynamical-decoupling quantum-computing scheme , 2008, 0803.4320.

[4]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[5]  Fabio Benatti,et al.  Irreversible Quantum Dynamics , 2010 .

[6]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[7]  T. Monz,et al.  Realization of universal ion-trap quantum computation with decoherence-free qubits. , 2009, Physical review letters.

[8]  M. Plenio,et al.  Self-assembling hybrid diamond–biological quantum devices , 2013, 1301.1871.

[9]  F. F. Fanchini,et al.  Continuous dynamical protection of two-qubit entanglement from uncorrelated dephasing, bit flipping, and dissipation , 2007 .

[10]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[11]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[12]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[13]  M. B. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[14]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[15]  Gershon Kurizki,et al.  Bath-optimized minimal-energy protection of quantum operations from decoherence. , 2010, Physical review letters.

[16]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[17]  Design and control of spin gates in two quantum-dot arrays , 2005, cond-mat/0506414.

[18]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[19]  F. F. Fanchini,et al.  Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons , 2006, quant-ph/0611188.

[20]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[21]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[22]  D. A. Lidar,et al.  Control of decoherence: Analysis and comparison of three different strategies (22 pages) , 2005 .

[23]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[24]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[25]  Hailin Wang,et al.  Protecting a solid-state spin from decoherence using dressed spin states. , 2014, Physical review letters.

[26]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[27]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[28]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[29]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[30]  Andrew G. Glen,et al.  APPL , 2001 .

[31]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[32]  Daniel A. Lidar Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2014 .

[33]  M Lucamarini,et al.  Experimental inhibition of decoherence on flying qubits via "bang-bang" control. , 2009, Physical review letters.

[34]  Daniel A. Lidar,et al.  Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..

[35]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[36]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[37]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[38]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[39]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[40]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[41]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[42]  F. F. Fanchini,et al.  Protecting the √SWAP operation from general and residual errors by continuous dynamical decoupling , 2015, 1504.00592.

[43]  P. Kwiat,et al.  Experimental investigation of a two-qubit decoherence-free subspace. , 2004, Physical review letters.

[44]  M. B. Plenio,et al.  Robust trapped-ion quantum logic gates by continuous dynamical decoupling , 2012 .

[45]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[46]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[47]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[48]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[49]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[50]  A. Chaudhry,et al.  Decoherence control: Universal protection of two-qubit states and two-qubit gates using continuous driving fields , 2011, 1110.4695.

[51]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[52]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[53]  K J Resch,et al.  Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. , 2003, Physical review letters.

[54]  Christian Kurtsiefer,et al.  Decoherence-free quantum information processing with four-photon entangled states. , 2004, Physical review letters.

[55]  A Retzker,et al.  Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. , 2011, Physical review letters.

[56]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[57]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[58]  L. Duan,et al.  Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system , 2017, 1706.03313.