PAINTER: a spatio-spectral image reconstruction algorithm for optical interferometry

Astronomical optical interferometers sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid perturbations caused by atmospheric turbulence, the phases of the complex Fourier samples (visibilities) cannot be directly exploited. Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic optical interferometric instruments are now paving the way to multiwavelength imaging. This paper is devoted to the derivation of a spatiospectral (3D) image reconstruction algorithm, coined Polychromatic opticAl INTErferometric Reconstruction software (PAINTER). The algorithm relies on an iterative process, which alternates estimation of polychromatic images and complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also differential phases, which helps to better constrain the polychromatic reconstruction. Simulations on synthetic data illustrate the efficiency of the algorithm and, in particular, the relevance of injecting a differential phases model in the reconstruction.

[1]  Antoine Labeyrie,et al.  Resolved imaging of extra-solar planets with future 10 100 km optical interferometric arrays , 1996, astro-ph/9602093.

[2]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Blind Deconvolution Using a Total Variation Prior , 2009, IEEE Transactions on Image Processing.

[3]  É. Thiébaut Principles of Image Reconstruction in Interferometry , 2013 .

[4]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[5]  Isabelle Tallon-Bosc,et al.  Estimation of visibility amplitude by optical long-baseline Michelson interferometry with large apertures , 1994 .

[6]  Alexis Carlotti,et al.  Strategies for the deconvolution of hypertelescope images , 2012 .

[7]  F Roddier,et al.  Long-baseline Michelson interferometry with large ground-based telescopes operating at optical wavelengths. I. General formalism. Interferometry at visible wavelengths , 1984 .

[8]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[9]  David Mouillet,et al.  AMBER: the near-infrared focal instrument for the Very Large Telescope Interferometer , 2000, Astronomical Telescopes and Instrumentation.

[10]  John D. Monnier,et al.  An interferometry imaging beauty contest , 2004, SPIE Astronomical Telescopes + Instrumentation.

[11]  John D. Monnier,et al.  Monte-Carlo imaging for optical interferometry , 2020, SPIE Astronomical Telescopes + Instrumentation.

[12]  S. Lafrasse,et al.  LITpro: a model fitting software for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[13]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[14]  Romain G. Petrov,et al.  VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .

[15]  R. Jennison A Phase Sensitive Interferometer Technique for the Measurement of the Fourier Transforms of Spatial Brightness Distributions of Small Angular Extent , 1958 .

[16]  Francois Roddier,et al.  Triple correlation as a phase closure technique , 1986 .

[17]  Gerd Weigelt,et al.  An image reconstruction method (IRBis) for optical/infrared interferometry , 2014 .

[18]  W. Van Hamme,et al.  New limb-darkening coefficients for modeling binary star light curves , 1993 .

[19]  Eric Thiébaut INTRODUCTION TOIMAGE RECONSTRUCTION AND INVERSE PROBLEMS , 2006 .

[20]  Romain Petrov,et al.  Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623 , 2010, 1012.2957.

[21]  Fabien Malbet,et al.  ASPRO: a software to prepare observations with optical interferometers , 2002, SPIE Astronomical Telescopes + Instrumentation.

[22]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[23]  Gerd Weigelt,et al.  VLTI/AMBER differential interferometry of the broad-line region of the quasar 3C273 , 2014, Other Conferences.

[24]  J.-L. Lizon,et al.  MATISSE: perspective of imaging in the mid-infrared at the VLTI , 2006, Astronomical Telescopes + Instrumentation.

[25]  David Mouillet,et al.  AMBER : Instrument description and first astrophysical results Special feature AMBER , the near-infrared spectro-interferometric three-telescope VLTI instrument , 2007 .

[26]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[27]  Fabien Malbet,et al.  Image reconstruction in optical interferometry: benchmarking the regularization , 2011, 1106.4508.

[28]  J. Monnier Optical interferometry in astronomy , 2003, astro-ph/0307036.

[29]  David Mary,et al.  Concept study of an Extremely Large Hyper Telescope (ELHyT) with 1200m sparse aperture for direct imaging at 100 micro-arcsecond resolution , 2012, Other Conferences.

[30]  Serge Meimon Reconstruction d'images astronomiques en interférométrie optique , 2005 .

[31]  Marc Ollivier,et al.  A scene model of exosolar systems for use in planetary detection and characterisation simulations , 2007, 0709.0865.

[32]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[33]  Gerd Weigelt,et al.  Iterative image reconstruction from the bispectrum , 1993 .

[34]  A. Magid Basic Algebra I, second edition. By Nathan Jacobson. , 1986 .

[35]  Guy Le Besnerais,et al.  Advanced Imaging Methods for Long-Baseline Optical Interferometry , 2008, IEEE Journal of Selected Topics in Signal Processing.

[36]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[37]  Florentin Millour Interférométrie différentielle avec AMBER , 2006 .

[38]  Laurent M Mugnier,et al.  Reconstruction method for weak-phase optical interferometry. , 2005, Optics letters.

[39]  Ferréol Soulez,et al.  Exploiting spatial sparsity for multi-wavelength imaging in optical interferometry , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  Éric Thiébaut,et al.  MIRA: an effective imaging algorithm for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[41]  F. Malbet,et al.  SPARCO : a semi-parametric approach for image reconstruction of chromatic objects. Application to young stellar objects , 2014, 1403.3343.

[42]  John D. Monnier,et al.  Toward 5D image reconstruction for optical interferometry , 2012, Other Conferences.

[43]  Antoine Labeyrie,et al.  Interference fringes obtained on VEGA with two optical telescopes , 1975 .

[44]  Éric Thiébaut,et al.  An image reconstruction framework for polychromatic interferometry , 2013 .

[45]  David Mary,et al.  Interferometric image reconstruction with sparse priors in union of bases , 2010 .

[46]  J. D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2005 .

[47]  Éric Thiébaut,et al.  Image Reconstruction in Optical Interferometry , 2014 .

[48]  David F. Buscher Direct Maximum-Entropy Image Reconstruction from the Bispectrum , 1994 .

[49]  Werner Laun,et al.  GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI , 2007, Proceedings of the International Astronomical Union.

[50]  Eric Thiébaut INTRODUCTION TO IMAGE RECONSTRUCTION AND INVERSE PROBLEMS , .