A primal dual projection algorithm for efficient constraint preconditioning

We consider a linear iterative solver for large scale linearly constrained quadratic minimization problems that arise, for example, in optimization with PDEs. By a primal-dual projection (PDP) iteration, which can be interpreted and analysed as a gradient method on a quotient space, the given problem can be solved by computing sulutions for a sequence of constrained surrogate problems, projections onto the feasible subspaces, and Lagrange multiplier updates. As a major application we consider a class of optimization problems with PDEs, where PDP can be applied together with a projected cg method using a block triangular constraint preconditioner. Numerical experiments show reliable and competitive performance for an optimal control problem in elasticity.

[1]  C. Micchelli,et al.  Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .

[2]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[3]  Stefan Ulbrich,et al.  Operator Preconditioning for a Class of Inequality Constrained Optimal Control Problems , 2014, SIAM J. Optim..

[4]  Martin H. Gutknecht,et al.  The Chebyshev iteration revisited , 2002, Parallel Comput..

[5]  Matthias Heinkenschloss,et al.  A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization , 2014, SIAM J. Optim..

[6]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[7]  Martin Stoll,et al.  Preconditioning for partial differential equation constrained optimization with control constraints , 2011, Numer. Linear Algebra Appl..

[8]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[9]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[10]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[11]  Peter Benner,et al.  Block-Diagonal Preconditioning for Optimal Control Problems Constrained by PDEs with Uncertain Inputs , 2016, SIAM J. Matrix Anal. Appl..

[12]  Nicholas I. M. Gould,et al.  On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..

[13]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[14]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[15]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[16]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[17]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[18]  Dominik Meidner,et al.  Trust region methods with hierarchical finite element models for PDE-constrained optimization , 2011 .

[19]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  Andreas Dedner,et al.  The Distributed and Unified Numerics Environment (DUNE) , 2006 .

[22]  Sebastian Götschel,et al.  Kaskade 7 - A flexible finite element toolbox , 2020, Comput. Math. Appl..

[23]  Sebastian Götschel,et al.  Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox , 2012 .

[24]  Roland Herzog,et al.  A Modified Implementation of MINRES to Monitor Residual Subvector Norms for Block Systems , 2016, SIAM J. Sci. Comput..

[25]  A. Wathen,et al.  Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .

[26]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..