Improved estimation of extreme quantiles in the multivariate Lomax (Pareto II) distribution
暂无分享,去创建一个
[1] S. Kourouklis,et al. Estimation of a scale parameter in mixture models with unknown location , 2005 .
[2] A. Rukhin. Admissibility and Minaxity Results in the Estimation Problem of Exponential Quantiles , 1986 .
[3] Abdulaziz Elfessi. Estimation of a linear function of the parameters of an exponential distribution from doubly censored samples , 1997 .
[4] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[5] S. Kourouklis,et al. Estimation of an Exponential Quantile under a General Loss and an Alternative Estimator under Quadratic Loss , 2001 .
[6] M. Bryson. Heavy-Tailed Distributions: Properties and Tests , 1974 .
[7] J. Zidek. Inadmissibility of a Class of Estimators of a Normal Quantile , 1971 .
[8] D. Lindley,et al. Multivariate distributions for the life lengths of components of a system sharing a common environment , 1986, Journal of Applied Probability.
[9] T. Nayak. Multivariate Lomax distribution: properties and usefulness in reliability theory , 1987, Journal of Applied Probability.
[10] ESTIMATION OF LINEAR PARAMETRIC FUNCTIONS FOR SEVERAL EXPONENTIAL SAMPLES , 1985 .
[11] D. Dey. Estimation of scale parameters in mixture distributions , 1990 .
[12] E. Lehmann. Testing Statistical Hypotheses , 1960 .
[13] C. Stein. Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean , 1964 .
[14] K. Lomax. Business Failures: Another Example of the Analysis of Failure Data , 1954 .