Improved estimation of extreme quantiles in the multivariate Lomax (Pareto II) distribution

Abstract.Estimation of a quantile of the common marginal distribution in a multivariate Lomax (Pareto II) distribution with unknown location and scale parameters is considered. For quadratic loss and specified extreme quantiles, it is established that the best affine equivariant procedure is inadmissible by constructing a better estimator.

[1]  S. Kourouklis,et al.  Estimation of a scale parameter in mixture models with unknown location , 2005 .

[2]  A. Rukhin Admissibility and Minaxity Results in the Estimation Problem of Exponential Quantiles , 1986 .

[3]  Abdulaziz Elfessi Estimation of a linear function of the parameters of an exponential distribution from doubly censored samples , 1997 .

[4]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[5]  S. Kourouklis,et al.  Estimation of an Exponential Quantile under a General Loss and an Alternative Estimator under Quadratic Loss , 2001 .

[6]  M. Bryson Heavy-Tailed Distributions: Properties and Tests , 1974 .

[7]  J. Zidek Inadmissibility of a Class of Estimators of a Normal Quantile , 1971 .

[8]  D. Lindley,et al.  Multivariate distributions for the life lengths of components of a system sharing a common environment , 1986, Journal of Applied Probability.

[9]  T. Nayak Multivariate Lomax distribution: properties and usefulness in reliability theory , 1987, Journal of Applied Probability.

[10]  ESTIMATION OF LINEAR PARAMETRIC FUNCTIONS FOR SEVERAL EXPONENTIAL SAMPLES , 1985 .

[11]  D. Dey Estimation of scale parameters in mixture distributions , 1990 .

[12]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[13]  C. Stein Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean , 1964 .

[14]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .