Robust and Stable Delay Interferometers with Application to d -Dimensional Time-Frequency Quantum Key Distribution

We investigate experimentally a cascade of temperature-compensated unequal-path interferometers that can be used to measure frequency states in a high-dimensional quantum distribution system. In particular, we demonstrate that commercially-available interferometers have sufficient environmental isolation so that they maintain an interference visibility greater than 98.5\% at a wavelength of 1550 nm over extended periods with only moderate passive control of the interferometer temperature ($ 99\%$ over an hour, which is mainly limited by our ability to precisely generate these states. Overall, our results indicate that these interferometers are well suited for realistic time-frequency quantum distribution protocols.

[1]  S. Etcheverry,et al.  Quantum key distribution session with 16-dimensional photonic states , 2013, Scientific Reports.

[2]  Zach DeVito,et al.  Opt , 2017 .

[3]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[4]  Gerd Leuchs,et al.  Trojan-horse attacks threaten the security of practical quantum cryptography , 2014, 1406.5813.

[5]  Daniel J. Gauthier,et al.  Security of high-dimensional quantum key distribution protocols using Franson interferometers , 2013, 1305.4541.

[6]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[7]  Vera Paz,et al.  High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers Distribución cuántica de clave con estados señuelo en altas dimensiones a través de una fibra óptica multinúcleo , 2016 .

[8]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[9]  Masato Koashi,et al.  Experimental quantum key distribution without monitoring signal disturbance , 2015, Nature Photonics.

[10]  Dirk Englund,et al.  Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. , 2013, Physical review letters.

[11]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[12]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[13]  W. Marsden I and J , 2012 .

[14]  G. Thuillier,et al.  Fully compensated Michelson interferometer of fixed-path difference. , 1985, Applied optics.

[15]  Brian J. Smith,et al.  Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. , 2013, Optics express.

[16]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[17]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[18]  Pascal Junod,et al.  A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing , 2013, 1309.2583.

[19]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[20]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[21]  J. Mower,et al.  High-Dimensional Quantum Key Distribution using Dispersive Optics , 2012 .

[22]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[23]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[24]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[25]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[26]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[27]  Leif Katsuo Oxenløwe,et al.  High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits , 2016, npj Quantum Information.

[28]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[29]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[30]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[31]  Hiroki Takesue,et al.  Differential-phase-shift quantum key distribution , 2009, 2006 Digest of the LEOS Summer Topical Meetings.

[32]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[33]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[34]  W. Gault,et al.  Optimization of a field-widened Michelson interferometer. , 1985, Applied optics.

[35]  N. Gisin,et al.  Quantum cryptography over 23 km in installed under-lake telecom fibre , 1996 .

[36]  Zhu Cao,et al.  Experimental passive round-robin differential phase-shift quantum key distribution. , 2015, Physical review letters.

[37]  B. Brecht,et al.  Photon temporal modes: a complete framework for quantum information science , 2015, 1504.06251.

[38]  N. Gisin,et al.  Automated 'plug & play' quantum key distribution , 1998, quant-ph/9812052.

[39]  Andrew G. Glen,et al.  APPL , 2001 .