Observational logic, constructor-based logic, and their duality

Observability and reachability are important concepts for formal software development. While observability concepts are used to specify the required observable behavior of a program or system, reachability concepts are used to describe the underlying data in terms of datatype constructors. In this paper we first reconsider the observational logic institution which provides a logical framework for dealing with observability. Then we develop in a completely analogous way the constructor-based logic institution which formalizes a novel treatment of reachability. Both institutions are tailored to capture the semantically correct realizations of a specification from either the observational or the reachability point of view. We show that there is a methodological and even formal duality between both frameworks. In particular, we establish a correspondence between observer operations and datatype constructors, observational and constructor-based algebras, fully abstract and reachable algebras, and observational and inductive consequences of specifications. The formal duality between the observability and reachability concepts is established in a category-theoretic setting.

[1]  Michel Bidoit,et al.  Observational Logic , 1998, AMAST.

[2]  Michael A. Arbib,et al.  Foundations of system theory: Decomposable systems , 1974, Autom..

[3]  Manfred Broy,et al.  A Modular Framework for Specification and Implementation , 1989, TAPSOFT, Vol.1.

[4]  Martin Hofmann,et al.  On Behavioural Abstraction and Behavioural Satisfaction in Higher-Order Logic , 1995, Theor. Comput. Sci..

[5]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[6]  Michael A. Arbib Fondations de la théorie de systèmes: Systèmes décomposablesGrundlagen der systemtheorie: Dekomponierbare systemeФopмиpoвaниe тeopии cиcтeм: дeкoмпoзaбeльнe cиcтeмы , 1974 .

[7]  Martin Wirsing,et al.  Behavioural and Abstractor Specifications , 1995, Sci. Comput. Program..

[8]  Horst Reichel,et al.  Initial Computability, Algebraic Specifications, and Partial Algebras , 1987 .

[9]  A. Kurz,et al.  Coalgebras and modal logic for parameterised endofunctors , 2000 .

[10]  Peter D. Mosses,et al.  CASL: the Common Algebraic Specification Language , 2002, Theor. Comput. Sci..

[11]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[12]  Michel Bidoit,et al.  On the Integration of Observability and Reachability Concepts , 2002, FoSSaCS.

[13]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[14]  Donald Sannella,et al.  On Observational Equivalence and Algebraic Specification , 1985, TAPSOFT, Vol.1.

[15]  Egidio Astesiano,et al.  Algebraic Foundations of Systems Specification , 1999, IFIP State-of-the-Art Reports.

[16]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[17]  C. A. R. Hoare,et al.  Proof of Correctness of Data Representations (Reprint) , 2002, Software Pioneers.

[18]  Corina Cîrstea,et al.  Coalgebra semantics for hidden algebra: Parameterised objects an inheritance , 1997, WADT.

[19]  Andrzej Tarlecki,et al.  On the Existence of Free Models in Abstract Algebraic Institutuons , 1985, Theor. Comput. Sci..

[20]  Martin Wirsing,et al.  Proof Systems for Structured Specifications with Observability Operators , 1997, Theor. Comput. Sci..

[21]  Alexander Kurz,et al.  On the Duality between Observability and Reachability , 2001, FoSSaCS.

[22]  W. Wonham,et al.  Topics in mathematical system theory , 1972, IEEE Transactions on Automatic Control.

[23]  Erik Poll,et al.  A Logic for Abstract Data Types as Existential Types , 1999, TLCA.

[24]  Peter Padawitz,et al.  Swinging types=functions+relations+transition systems , 2000, Theor. Comput. Sci..

[25]  Wladyslaw M. Turski Behavioural specifications ' , 1999 .

[26]  Andrzej Tarlecki,et al.  Towards Heterogeneous Specifications , 1998, FroCoS.

[27]  H. Keisler Model theory for infinitary logic , 1971 .

[28]  Donald Sannella,et al.  Specifications in an Arbitrary Institution , 1988, Inf. Comput..

[29]  Michel Bidoit,et al.  Observer Complete Definitions are Behaviourally Coherent , 1999 .

[30]  Grigore Rosu,et al.  Hiding More of Hidden Algebra , 1999, World Congress on Formal Methods.

[31]  Martin Hofmann,et al.  On Behavioral Abstraction and Behavioural Satisfaction in Higher-Order Logic , 1995, TAPSOFT.

[32]  Alexander Kurz,et al.  On institutions for modular coalgebraic specifications , 2002, Theor. Comput. Sci..

[33]  Alexander Kurz,et al.  (Omega, Xi)-Logic: On the Algebraic Extension of Coalgebraic Specifications , 1999, CMCS.

[34]  María Victoria Cengarle,et al.  Proof Systems for Structured Specifications and Their Refinements , 1999, Algebraic Foundations of Systems Specification.

[35]  Hans-Dieter Ehrich,et al.  Specification of abstract data types , 1996 .

[36]  C. A. R. Hoare,et al.  Proof of correctness of data representations , 1972, Acta Informatica.

[37]  M. Arbib,et al.  Adjoint machines, state-behavior machines, and duality☆ , 1975 .

[38]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[39]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.