Hybrid evolutionary programming with fast convergence for constrained optimization problems

A hybridization of accelerated evolutionary programming (AEP) and a deterministic optimization procedure is applied to a series of constrained nonlinear and quadratic optimization problems. The hybrid scheme is compared with other existing schemes such as AEP alone, two-phase (TP) optimization, and EP with a nonstationary penalty function (NS-EP). The results indicate that the hybrid approach can outperform the other methods when addressing constrained optimization problems with respect to the computational efficiency and solution accuracy.

[1]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[2]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[5]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[6]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[8]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[9]  Zbigniew Michalewicz,et al.  GENOCOP: a genetic algorithm for numerical optimization problems with linear constraints , 1996, CACM.

[10]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[11]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[12]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[13]  L. C. Stayton,et al.  On the effectiveness of crossover in simulated evolutionary optimization. , 1994, Bio Systems.

[14]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[15]  Leon O. Chua,et al.  Neural networks for nonlinear programming , 1988 .

[16]  Jong-Hwan Kim,et al.  Friction Parameter Identification and Compensation Scheme of X-Y Table by Using Evolutionary Algorithm , 1995 .

[17]  Michael A. Shanblatt,et al.  A two-phase optimization neural network , 1992, IEEE Trans. Neural Networks.

[18]  Hyun Myung,et al.  Preliminary Investigations into a Two-State Method of Evolutionary Optimization on Constrained Problems , 1995, Evolutionary Programming.

[19]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[20]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[21]  Jan Paredis,et al.  Co-evolutionary Constraint Satisfaction , 1994, PPSN.