Effects of Ignoring Correlated Measurement Error in Structural Equation Models

The implications of ignoring correlated error on parameter estimates in some simple structural equation models are examined. Ignoring correlated measurement error not only affected the acceptability of a model based on goodness-of-fit measures, but also affected the parameter estimation. Ignoring within-construct correlated error does not affect the estimates of the structural parameter but overestimates the associated measurement parameters. It is shown analytically and empirically that ignoring positive between-construct correlated error overestimates the structural parameter linking the two constructs. The effects become more pronounced with decreasing reliability in measurement.

[1]  W. R. Dillon,et al.  Some Results on the Behavior of Alternate Covariance Structure Estimation Procedures in the Presence of Non-Normal Data , 1989 .

[2]  Peter M. Bentler,et al.  EQS : structural equations program manual , 1989 .

[3]  J. Farley,et al.  A Factorial Evaluation of Effects of Model Specification and Error on Parameter Estimation in a Structural Equation Model. , 1987, Multivariate behavioral research.

[4]  L. Wolfle,et al.  Within-Variable, between Occasion Error Covariances in Models of Educational Achievement , 1986 .

[5]  S. Reddy,et al.  Hierarchical Models of Attitude. , 1985, Multivariate behavioral research.

[6]  James C. Anderson,et al.  The Effects of Sampling Error and Model Characteristics on Parameter Estimation for Maximum Likelihood Confirmatory Factor Analysis. , 1985, Multivariate behavioral research.

[7]  James C. Anderson,et al.  The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis , 1984 .

[8]  James C. Anderson,et al.  On the Meaning of Within-Factor Correlated Measurement Errors , 1984 .

[9]  Richard P. Bagozzi,et al.  "Issues in the application of covariance structure analysis": A further comment. , 1983 .

[10]  Claes Fornell,et al.  Issues in the Application of Covariance Structure Analysis: A Comment , 1983 .

[11]  K. Jöreskog,et al.  Analysis of linear structural relationships by maximum likelihood and least squares methods , 1983 .

[12]  Michael J. Ryan Behavioral intention formation : the interdependency of attitudinal and social influence variables , 1982 .

[13]  Herman Wold,et al.  Systems under indirect observation : causality, structure, prediction , 1982 .

[14]  H. White Consequences and Detection of Misspecified Nonlinear Regression Models , 1981 .

[15]  C. Fornell,et al.  Evaluating structural equation models with unobservable variables and measurement error. , 1981 .

[16]  Donald R. Lehmann,et al.  Validity of Information Display Boards: An Assessment Using Longitudinal Data , 1980 .

[17]  William R. Darden,et al.  Causal Models in Marketing , 1980 .

[18]  J. Geweke,et al.  Interpreting the Likelihood Ratio Statistic in Factor Models When Sample Size is Small , 1980 .

[19]  Peter M. Bentler,et al.  Simple minitheories of love. , 1979 .

[20]  William A. Fisher,et al.  A Behavioral Process Approach to Information Acquisition in Nondurable Purchasing , 1978 .

[21]  P. R. Krishnaiah,et al.  Applications of Statistics , 1978 .

[22]  O. D. Duncan,et al.  Introduction to Structural Equation Models. , 1977 .

[23]  Dag Sörbom,et al.  DETECTION OF CORRELATED ERRORS IN LONGITUDINAL DATA , 1975 .

[24]  Donald R. Lehmann,et al.  The Importance of Halo Effects in Multi-Attribute Attitude Models: , 1975 .

[25]  Dennis J. Aigner MSE dominance of least squares with errors-of-observation , 1974 .

[26]  P. Zarembka Frontiers in econometrics , 1973 .

[27]  Bennett T. McCallum,et al.  Relative Asymptotic Bias from Errors of Omission and Measurement , 1972 .

[28]  M. Wickens A Note on the Use of Proxy Variables , 1972 .

[29]  K. Jöreskog A general method for analysis of covariance structures , 1970 .

[30]  R. D. Bock,et al.  Analysis of covariance structures , 1966, Psychometrika.