Electrically tunable materials for microwave applications

Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

[1]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[2]  Shepard Roberts,et al.  Dielectric and Piezoelectric Properties of Barium Titanate , 1947 .

[3]  Willis Jackson,et al.  The measurement of the dielectric properties of high-permittivity materials at centimetre wavelengths , 1949 .

[4]  Lawrence G. Rubin,et al.  Some Dielectric Properties of Barium‐Strontium Titanate Ceramics at 3000 Megacycles , 1953 .

[5]  S. Nomura,et al.  Dielectric Properties of Lead·Strontium Titanate , 1955 .

[6]  Properties of Polyvinylidene Fluoride. I. Dielectric Measurements , 1961 .

[7]  R. Pantell,et al.  Ferroelectric Harmonic Generator and the Large‐Signal Microwave Characteristics of a Ferroelectric Ceramic , 1962 .

[8]  V. C. Sanvordenker Optical and Microstructural Variations with Electric Field in Barium-Strontium Titanate Ceramics , 1967 .

[9]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[10]  G. R. Crane,et al.  Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films , 1971 .

[11]  Yozo Chatani,et al.  Crystal Structures of Three Crystalline Forms of Poly(vinylidene fluoride) , 1972 .

[12]  R. Collins,et al.  Pyroelectricity and charge transport in a copolymer of vinylidene fluoride and tetrafluoroethylene , 1976, Conference on Electrical Insulation & Dielectric Phenomena - Annual Report 1976.

[13]  Steven C. Roth,et al.  Electric‐field‐induced phase changes in poly(vinylidene fluoride) , 1978 .

[14]  J. C. Hicks,et al.  Ferroelectric properties of poly(vinylidene fluoride‐tetrafluoroethylene) , 1978 .

[15]  E. Fukada,et al.  Dielectric hysteresis and rotation of dipoles in polyvinylidene fluoride , 1980 .

[16]  Gerhard M. Sessler,et al.  Piezoelectricity in polyvinylidenefluoride , 1981 .

[17]  G. Johnson,et al.  Ferroelectric phase transition in a copolymer of vinylidene fluoride and trifluoroethylene , 1981 .

[18]  Andrew J. Lovinger,et al.  Crystalline forms in a copolymer of vinylidene fluoride and trifluoroethylene (52/48 mol %) , 1982 .

[19]  L. T. Chen,et al.  The influence of head-to-head defects on the crystallization of PVF2 , 1984 .

[20]  N. Koizumi,et al.  Dynamic Mechanical Dispersion in Copolymers of Vinylidene Fluoride and Trifluoroethylene , 1985 .

[21]  T. Furukawa,et al.  Nanosecond Switching in Thin Fims of Vinylidene Fluoride/Trilluoroethylene Copolymers , 1985 .

[22]  Anthony J. Bur,et al.  Dielectric properties of polymers at microwave frequencies: a review , 1985 .

[23]  Y. Wada Ferro-, Piezo-, and Pyroelectricity , 1985, IEEE Transactions on Electrical Insulation.

[24]  IX. bibliography on piezoelectricity and pyroelectricity of polymers 1985-1986 , 1987 .

[25]  Z. Zhigang,et al.  BTS: A new ferroelectric for multifunctional sensors , 1990 .

[26]  A. Tagantsev,et al.  Intrinsic dielectric loss in crystals , 1991 .

[27]  Hari Singh Nalwa,et al.  RECENT DEVELOPMENTS IN FERROELECTRIC POLYMERS , 1991 .

[28]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[29]  Daniel Dolfi,et al.  Liquid crystal microwave phase shifter , 1993 .

[30]  Anna M. Lackner,et al.  Liquid crystal millimeter wave electronic phase shifter , 1993 .

[31]  Robert E. Newnham,et al.  Electromechanical Properties of Smart Materials , 1993 .

[32]  Weidong Li,et al.  Study on the dielectric properties of oxide-doped Ba(Ti,Sn)O3 ceramics prepared from ultrafine powder , 1993, Journal of Materials Science.

[33]  Q. X. Jia,et al.  Electrically tunable coplanar transmission line resonators using YBa2Cu3O7−x/SrTiO3 bilayers , 1995 .

[34]  D. Reagor,et al.  Electrical characteristics of coplanar waveguide devices incorporating nonlinear dielectric thin films of SrTiO3 and Sr0.5Ba0.5TiO3 , 1995 .

[35]  D. K. Das-Gupta,et al.  Inorganic ceramic/polymer ferroelectric composite electrets , 1996 .

[36]  N. Yasuda,et al.  Dielectric Properties and Phase Transitions of Ba(Ti1-xSnx)O3 Solid Solution , 1996 .

[37]  Masashi Mukaida,et al.  Structural and Dielectric Properties of Ba(Ti1-xSnx)O3 Thin Films , 1996 .

[38]  B. W. Ricketts,et al.  Dielectric properties of ceramics , 1996 .

[39]  Rainer Waser,et al.  The dielectric response as a function of temperature and film thickness of fiber-textured (Ba,Sr)TiO3 thin films grown by chemical vapor deposition , 1997 .

[40]  L. Sengupta,et al.  Novel ferroelectric materials for phased array antennas , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[42]  C. Choy,et al.  Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethylene 0-3 composites , 1998 .

[43]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[44]  L. Sengupta,et al.  Breakthrough advances in low loss, tunable dielectric materials , 1999 .

[45]  G. Subramanyam,et al.  A K-band (HTS,gold)/ferroelectric thin film/dielectric diplexer for a discriminator-locked tunable oscillator , 1999, IEEE Transactions on Applied Superconductivity.

[46]  R. Waser,et al.  Ferroelectric thin films grown on tensile substrates: Renormalization of the Curie-Weiss law and apparent absence of ferroelectricity , 1999 .

[47]  Orest Vendik,et al.  Ferroelectric Tuning of Planar and Bulk Microwave Devices , 1999 .

[48]  J. Rao,et al.  Voltage-controlled ferroelectric lens phased arrays , 1999 .

[49]  A. S. Pavlov,et al.  Application of ferroelectrics in phase shifter design , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[50]  Haisheng Xu,et al.  High-dielectric-constant ceramic-powder polymer composites , 2000 .

[51]  Z. Yun,et al.  Design of a low-cost 2D beam steering antenna using ferroelectric material and the CTS technology , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[52]  A. Grishin,et al.  Ferroelectric silver niobate-tantalate thin films , 2000 .

[53]  A. Sirenko,et al.  Oxide Thin Films for Tunable Microwave Devices , 2000 .

[54]  Susan Trolier-McKinstry,et al.  The Properties of Ferroelectric Films at Small Dimensions , 2000 .

[55]  J. Levy,et al.  Direct observation of local ferroelectric phase transitions in BaxSr1−xTiO3 thin films , 2000 .

[56]  Spartak Gevorgian,et al.  Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices , 2001 .

[57]  A. Bhalla,et al.  Study of (Sr, Pb)TiO3 ceramics on dielectric and physical properties , 2001 .

[58]  M. Ervin,et al.  La doped Ba1−xSrxTiO3 thin films for tunable device applications , 2001 .

[59]  Spartak Gevorgian,et al.  Tailoring the temperature coefficient of capacitance in ferroelectric varactors , 2001 .

[60]  M. Lanagan,et al.  Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92 , 2002 .

[61]  Frequency Agile Materials for Electronics (FAME)-Progress in the DARPA Program , 2002 .

[62]  Design of narrow-band tunable band-pass filters based on dual mode SrTiO/sub 3/ disc resonators , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[63]  J. Speck,et al.  Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films , 2002 .

[64]  M. Lanagan,et al.  Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore , 2002 .

[65]  Pulsed excimer laser ablation growth and characterization of Ba(Sn0.1Ti0.9)O3 thin films , 2002 .

[66]  V. Kochervinskii Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review) , 2003 .

[67]  Y. Xi,et al.  Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition , 2003 .

[68]  A. Tagantsev,et al.  Ferroelectric Materials for Microwave Tunable Applications , 2003 .

[69]  S. Ducharme,et al.  Comparison of the theoretical and experimental band structure of poly(vinylidene fluoride) crystal , 2003 .

[70]  Susanne Stemmer,et al.  Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering , 2003 .

[71]  Toshihisa Kamei,et al.  Measurements of the dielectric properties of nematic liquid crystals at 10 kHz to 40 GHz and application to a variable delay line , 2003 .

[72]  X. M. Chen,et al.  Dielectric Characteristics and Tunability of Barium Stannate Titanate Ceramics , 2003 .

[73]  Zhengkui Xu,et al.  Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics , 2004 .

[74]  A. Bhalla,et al.  High-dielectric-tunability of ferroelectric (Pb,Sr)TiO3 thin films on (001) LaAlO3 , 2004 .

[75]  H. Beige,et al.  Non-Debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state , 2004 .

[76]  R. Jakoby,et al.  Nonlinear dielectrics for tunable microwave components , 2004, 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No.04EX824).

[77]  Felix A. Miranda,et al.  Pb0.3Sr0.7TiO3 thin films for high-frequency phase shifter applications , 2004 .

[78]  E. Ivers-Tiffée,et al.  Investigation of Ag(Ta,Nb)O3 as tunable microwave dielectric , 2004 .

[79]  Robert A. York,et al.  High tunability barium strontium titanate thin films for rf circuit applications , 2004 .

[80]  Dmitri O. Klenov,et al.  Influence of strain on the dielectric relaxation of pyrochlore bismuth zinc niobate thin films , 2004 .

[81]  J. Horwitz,et al.  Ferroelectric (Pb,Sr)TiO3 epitaxial thin films on (001) MgO for room temperature high-frequency tunable microwave elements , 2005 .

[82]  S.S.H. Hsu,et al.  Microwave characteristics of liquid-crystal tunable capacitors , 2005, IEEE Electron Device Letters.

[83]  A. Tagantsev,et al.  Permittivity, Tunability and Loss in Ferroelectrics for Reconfigurable High Frequency Electronics , 2005 .

[84]  A. Tagantsev,et al.  Temperature dependence of the dielectric tunability of pyrochlore bismuth zinc niobate thin films , 2005 .

[85]  A. Grishin,et al.  AgTa0.5Nb0.5O3 THIN FILM MICROWAVE COPLANAR WAVEGUIDE TUNABLE CAPACITORS , 2005 .

[86]  S. Stemmer,et al.  Microwave dielectric properties of tunable capacitors employing bismuth zinc niobate thin films , 2005 .

[87]  Jenn–Ming Wu,et al.  Electrical properties of W-doped (Ba0.5Sr0.5)TiO3 thin films , 2005 .

[88]  F. Kadlec,et al.  Microwave dielectric relaxation in cubic bismuth based pyrochlores containing titanium , 2006 .

[89]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[90]  Hong Wang,et al.  Dielectric tunability of Ba0.6Sr0.4TiO3/poly(methyl methocrylate) composites in 1-3-type structure , 2007 .

[91]  Xiaoyong Wei,et al.  Preparation, structure and dielectric property of barium stannate titanate ceramics , 2007 .

[92]  X. Yao,et al.  Effect of Ca substitution on structure and dielectric properties of bismuth-based microwave ceramics , 2008 .

[93]  C. Mueller,et al.  BaxSr1−xTiO3 Thin Film Ferroelectric‐Coupled Microstripline Phase Shifters with Reduced Device Hysteresis , 2008 .

[94]  Qiming Zhang,et al.  Large electric tunability in poly(vinylidene fluoride-trifluoroethylene) based polymers , 2008 .

[95]  M. Lancaster,et al.  Barium strontium titanate thin film varactors for room-temperature microwave device applications , 2008 .

[96]  A. Bhalla,et al.  HIGHLY EPITAXIAL FERROELECTRIC LEAD STRONTIUM TITANATE ((Pb,Sr)TiO3) THIN FILMS WITH EXTRA LARGE DIELECTRIC TUNABILITY: A GOOD CANDIDATE FOR ROOM TEMPERATURE TUNABLE MICROWAVE ELEMENTS , 2008 .

[97]  S. Gevorgian Ferroelectrics in Microwave Devices, Circuits and Systems , 2009 .

[98]  Nanosecond Switching Characteristics of Ferroelectric Ultrathin Vinylidene Fluoride/Trifluoroethylene Copolymer Films under Extremely High Electric Field , 2009 .

[99]  Se-Ho Kim,et al.  The microwave properties of Li doped 0.7(Ba,Sr)TiO3-0.3MgO thick film interdigital capacitors on the alumina substrates , 2010 .

[100]  J. Carru,et al.  Characterization of doped BST thin films deposited by sol-gel for tunable microwave devices , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[101]  N. F. Kartenko,et al.  Low loss microwave ferroelectric ceramics for high power tunable devices , 2010 .

[102]  J. Zhai,et al.  Electrically tunable dielectric materials and strategies to improve their performances , 2010 .

[103]  Electrical Properties of Cr Doped Pb0.5Sr0.5TiO3 Thin Films Prepared by Chemical Solution Deposition Method , 2010 .

[104]  Q. Jia,et al.  Extremely high tunability and low loss in nanoscaffold ferroelectric films. , 2012, Nano letters.

[105]  Ferroelectricity at the nanoscale , 2014 .