Perovskite-based low-cost and high-efficiency hybrid halide solar cells

A cost-effective and high-throughput material named perovskite has proven to be capable of converting 15.9% of the solar energy to electricity, compared to an efficiency of 3.8% that was obtained only four years ago. It has already outperformed most of the thin-film solar cell technologies that researchers have been studying for decades. Currently, the architecture of perovskite solar cells has been simplified from the traditional dye-sensitized solar cells to planar-heterojunction solar cells. Recently, the performance of perovskite in solar cells has attracted intensive attention and studies. Foreseeably, many transformative steps will be put forward over the coming few years. In this review, we summarize the recent exciting development in perovskite solar cells, and discuss the fundamental mechanisms of perovskite materials in solar cells and their structural evolution. In addition, future directions and prospects are proposed toward high-efficiency perovskite solar cells for practical applications.

[1]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[2]  L. Fang,et al.  TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells , 2011 .

[3]  G. Vitiello,et al.  Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. , 2013, Journal of the American Chemical Society.

[4]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[5]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[6]  T. Andreu,et al.  Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte. , 2013, ACS applied materials & interfaces.

[7]  B. Jia,et al.  Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets , 2013, Light: Science & Applications.

[8]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[9]  Henry J. Snaith,et al.  Estimating the Maximum Attainable Efficiency in Dye‐Sensitized Solar Cells , 2010 .

[10]  Y. Wada,et al.  Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole , 1998 .

[11]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[12]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[13]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[14]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[15]  Qiang Xu,et al.  Molecular Motions and Phase Transitions in Solid CH3NH3PbX3 (X = C1, Br, I) as Studied by NMR and NQR , 1991 .

[16]  Yoshihiro Furukawa,et al.  Phase Transition and Electric Conductivity of ASnCl3 (A = Cs and CH3NH3). , 1998 .

[17]  Jin Zhai,et al.  Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells , 2004 .

[18]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[19]  J. J. Wang,et al.  Synthesis and characterization of CsSnI3 thin films , 2010 .

[20]  David B. Mitzi,et al.  Thin-Film Deposition of Organic−Inorganic Hybrid Materials , 2001 .

[21]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[22]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[23]  T. Andreu,et al.  Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires , 2011 .

[24]  H. Boyen,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. , 2014 .

[25]  J. Moser,et al.  A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials , 2012, Nature Communications.

[26]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[27]  Yan Hao,et al.  Cobalt(II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells. , 2013, ACS applied materials & interfaces.

[28]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[29]  T. Andreu,et al.  Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile , 2011 .

[30]  Ming He,et al.  High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction , 2014 .

[31]  M. Grätzel,et al.  Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. , 2012, Journal of the American Chemical Society.

[32]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[33]  M. Bousmina,et al.  Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world , 2005 .

[34]  Tetsuo Tsutsui,et al.  Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 , 1994 .

[35]  D. Robert Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications , 2007 .

[36]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[37]  G. Boschloo,et al.  Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. , 2010, Journal of the American Chemical Society.

[38]  E. Diau,et al.  A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites , 2013 .

[39]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[40]  J. Anta,et al.  How Important is Working with an Ordered Electrode to Improve the Charge Collection Efficiency in Nanostructured Solar Cells? , 2012, The journal of physical chemistry letters.

[41]  R. Valiente,et al.  Electron-phonon coupling in charge-transfer and crystal-field states of Jahn-Teller CuCl 6 4 2 systems , 1999 .

[42]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[43]  M. Grätzel Dye-sensitized solar cells , 2003 .

[44]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[45]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[46]  Takashi Kondo,et al.  Extremely large binding energy of biexcitons in an organic–inorganic quantum-well material (C4H9NH3)2PbBr4 , 2003 .

[47]  Antonio M. López,et al.  Solution-growth and optoelectronic properties of ZnO:Cl@ZnS core-shell nanowires with tunable shell thickness , 2013 .

[48]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[49]  Michael Grätzel,et al.  Charge collection and pore filling in solid-state dye-sensitized solar cells , 2008, Nanotechnology.

[50]  Fengqi You,et al.  Assumptions and the levelized cost of energy for photovoltaics , 2011 .

[51]  C. Aruta,et al.  Growth and characterization of hybrid (CnH2n+1NH3)2CuCl4 self‐assembled films , 2005 .

[52]  F. Güell,et al.  Influence of the Annealing Atmosphere on the Performance of ZnO Nanowire Dye-Sensitized Solar Cells , 2013 .

[53]  Di Gao,et al.  Multilayer assembly of nanowire arrays for dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[54]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[55]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[56]  G. Shirane,et al.  NEUTRON DIFFRACTION STUDY OF ORTHORHOMBIC BaTiO$sub 3$ , 1957 .

[57]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[58]  S. Wagner,et al.  Heterojunction solar cells , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[59]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[60]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[61]  B. Liu,et al.  High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter , 2011 .

[62]  Lars Kloo,et al.  Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells , 2012 .

[63]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[64]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[65]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[66]  Martin A. Green,et al.  Solar Energy Conversion Toward 1 Terawatt , 2008 .

[67]  Zhou,et al.  Magnetic properties and critical behavior of quasi-two-dimensional systems , 1992, Physical review. B, Condensed matter.

[68]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[69]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[70]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[71]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[72]  F. Rodríguez,et al.  Electron-phonon coupling in charge-transfer and crystal-field states of Jahn-Teller CuCl6 42 systems , 1999 .

[73]  R. Service Turning up the light. , 2013, Science.

[74]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[75]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[76]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[77]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[78]  D. Mitzi SYNTHESIS AND CRYSTAL STRUCTURE OF THE ALKYLBISMUTH DIIODIDES : A FAMILY OF EXTENDED ONE-DIMENSIONAL ORGANOMETALLIC COMPOUNDS , 1996 .

[79]  Elisabeth Chassaing,et al.  Non‐vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers , 2010 .

[80]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[81]  Anders Hagfeldt,et al.  Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[82]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[83]  Emmanuel P. Giannelis,et al.  Polymer Layered Silicate Nanocomposites , 1996 .

[84]  F. Angelis MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. , 2014 .

[85]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[86]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[87]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[88]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[89]  Michael Grätzel,et al.  Novel nanostructures for next generation dye-sensitized solar cells , 2012 .

[90]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[91]  Dong Wook Kim,et al.  Improved quantum efficiency of highly efficient perovskite BaSnO₃-based dye-sensitized solar cells. , 2013, ACS nano.

[92]  N. Chen,et al.  Solid state dye sensitized solar cells. , 2013 .

[93]  M. Breese,et al.  Proton beam writing , 2007 .

[94]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[95]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[96]  Antonio M. López,et al.  Solution-growth and optoelectronic performance of ZnO : Cl/TiO2 and ZnO : Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness , 2012 .

[97]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[98]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[99]  Erik M. J. Johansson,et al.  Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. , 2013, Nanoscale.

[100]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[101]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[102]  Anders Hagfeldt,et al.  Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. , 2009, Accounts of chemical research.

[103]  Ishihara,et al.  Dielectric confinement effect on excitons in PbI4-based layered semiconductors. , 1992, Physical review. B, Condensed matter.

[104]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[105]  Bryce S. Richards,et al.  Improvement in multi‐crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer , 2011 .

[106]  R. Miles,et al.  Inorganic photovoltaic cells , 2007 .

[107]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[108]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[109]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[110]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.