Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides
暂无分享,去创建一个
Ronald B. Morgan | Walter Wilcox | Abdou M. Abdel-Rehim | Dywayne A. Nicely | R. Morgan | A. Abdel-Rehim | W. Wilcox
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[3] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[4] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[5] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[6] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[7] B. Parlett. A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .
[8] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[9] J. Grcar. Analyses of the lanczos algorithm and of the approximation problem in richardson's method , 1981 .
[10] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[11] Y. Saad,et al. Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .
[12] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[13] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[14] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[15] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .
[16] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[17] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[18] R. Mittra,et al. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .
[19] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .
[20] R. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .
[21] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[22] D. Calvetti,et al. AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .
[23] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[24] P. Forcrand. Progress on lattice QCD algorithms , 1995, hep-lat/9509082.
[25] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[26] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[27] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[28] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[29] D. Calvetti,et al. Iterative methods for the computation of a few eigenvalues of a large symmetric matrix , 1996 .
[30] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[31] V. Simoncini,et al. A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides , 1996 .
[32] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[33] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[34] Tony F. Chan,et al. Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..
[35] A. Frommer. Linear systems solvers — recent developments and implications for lattice computations , 1996, hep-lat/9608074.
[36] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[37] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[38] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[39] Kesheng Wu,et al. Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems , 1998, IRREGULAR.
[40] R. Morgan,et al. Harmonic projection methods for large non-symmetric eigenvalue problems , 1998 .
[41] Min Zeng,et al. Harmonic projection methods for large non-symmetric eigenvalue problems , 1998, Numer. Linear Algebra Appl..
[42] K. Burrage,et al. On the Performance of Various Adaptive Preconditioned GMRES Strategies , 1998 .
[43] U. Heller,et al. Study of chiral symmetry in quenched QCD using the overlap Dirac operator , 1998, hep-lat/9811030.
[44] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[45] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[46] R. Narayanan,et al. Alternative to domain wall fermions , 2000, hep-lat/0005004.
[47] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[48] Frédéric Guyomarc'h,et al. An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[49] Ronald B. Morgan,et al. Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..
[50] Liu,et al. Chiral symmetry, quark mass, and scaling of the overlap fermions , 2000, Physical review letters.
[51] Eric L. Miller,et al. QMR-Based Projection Techniques for the Solution of Non-Hermitian Systems with Multiple Right-Hand Sides , 2001, SIAM J. Sci. Comput..
[52] T. Lippert,et al. Low fermionic eigenmode dominance in QCD on the lattice , 2001, hep-lat/0106016.
[53] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[54] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[55] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[56] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[57] M. Gutknecht,et al. Block Krylov methods for Hermitian linear systems , 2004 .
[58] R. Morgan,et al. Deflation of eigenvalues for iterative methods in lattice QCD , 2003, hep-lat/0309068.
[59] R. Morgan,et al. Deflated Iterative Methods for Linear Equations with Multiple Right-Hand Sides , 2004, math-ph/0405053.
[60] C. Le Calvez,et al. Implicitly restarted and deflated GMRES , 1999, Numerical Algorithms.
[61] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[62] R. Morgan. Restarted block-GMRES with deflation of eigenvalues , 2005 .
[63] R. Morgan,et al. A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity , 2006 .
[64] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[65] Wolfgang Fichtner,et al. Improving the Accuracy of GMRes with Deflated Restarting , 2007, SIAM J. Sci. Comput..
[66] M. Lüscher. Local coherence and deflation of the low quark modes in lattice QCD , 2007 .
[67] M. Luscher. Local coherence and deflation of the low quark modes in lattice QCD , 2007, 0706.2298.
[68] J. Baglama. Augmented Block Householder Arnoldi Method , 2008 .
[69] Yousef Saad,et al. Block Krylov–Schur method for large symmetric eigenvalue problems , 2008, Numerical Algorithms.
[70] A. Stathopoulos,et al. Computing and deflating eigenvalues while solving multiple right hand side linear systems in Quantum Chromodynamics , 2008 .
[71] Andreas Stathopoulos,et al. Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..
[72] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .