A bifunctional perovskite catalyst for oxygen reduction and evolution.

La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3d is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm-scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A-site cations with La3+ and local stress on Cosite sub-lattice with the cubic perovskite structure.

[1]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[2]  Joon-Hyung Lee,et al.  Thermal expansion behavior of La-doped (Ba0.5Sr0.5Co0.8Fe0.2)O3−δ cathode material , 2013 .

[3]  Hsing-lin Wang,et al.  A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. , 2013, Chemical communications.

[4]  Jun Chen,et al.  Enhancing electrocatalytic oxygen reduction on MnO(2) with vacancies. , 2013, Angewandte Chemie.

[5]  Jae-Il Jung,et al.  Kinetic demixing/decomposition of Ba0.5Sr0.5CoxFe1−xO3−δ (x = 0.2 and 0.8) , 2012 .

[6]  Ming Liu,et al.  Ultrafast oxygen exchange kinetics on highly epitaxial PrBaCo2O5+δ thin films , 2012 .

[7]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[8]  Zhongwei Chen,et al.  A review on non-precious metal electrocatalysts for PEM fuel cells , 2011 .

[9]  Jae-Il Jung,et al.  X-ray photoelectron (XPS) and Diffuse Reflectance Infra Fourier Transformation (DRIFT) study of Ba0.5Sr0.5CoxFe1−xO3−δ (BSCF: x=0–0.8) ceramics , 2011 .

[10]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[11]  Jae-Il Jung,et al.  X-ray photoelectron study on Ba0.5Sr0.5CoxFe1−xO3−δ (BSCF: x = 0.2 and 0.8) ceramics annealed at different temperature and pO2 , 2011 .

[12]  Meilin Liu,et al.  Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform , 2011 .

[13]  K. Efimov,et al.  Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite Decomposition at Intermediate Temperatures , 2010 .

[14]  S. Misture,et al.  Oxygen stoichiometry, electrical conductivity, and thermopower measurements of BSCF (Ba0.5Sr0.5CoxFe1 − xO3 − δ, 0≤ x ≤ 0.8) in air , 2010 .

[15]  P. Woodward,et al.  Cation ordering in perovskites , 2010 .

[16]  M. Baghalha,et al.  Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation , 2009 .

[17]  Yue Zhang,et al.  X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells , 2009 .

[18]  P. Ried,et al.  Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ , 2008 .

[19]  Xiao-hui Liu,et al.  Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area and Excellent Activity in Methane Combustion , 2008 .

[20]  S. Yamasaki,et al.  CO oxidation on perovskite-type LaCoO3 synthesized using ethylene glycol and citric acid , 2008 .

[21]  L. Cadús,et al.  La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS , 2006 .

[22]  C. Mims,et al.  Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films , 2006 .

[23]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[24]  Frank Tietz,et al.  HIGH-TEMPERATURE THERMAL EXPANSION AND CONDUCTIVITY OF COBALTITES: POTENTIALS FOR ADAPTATION OF THE THERMAL EXPANSION TO THE DEMANDS FOR SOLID OXIDE FUEL CELLS , 2004 .

[25]  P. Davies,et al.  Influence of Cation Order on the Dielectric Properties of Pb(Mg1/3Nb2/3)O3–Pb(Sc1/2Nb1/2)O3 (PMN‐PSN) Relaxor Ferroelectrics , 2003 .

[26]  T. Palstra,et al.  Evidence for orbital ordering in LaCoO3 , 2003, cond-mat/0304651.

[27]  Yongfa Zhu,et al.  Preparation of nanosized LaCoO3 perovskite oxide using amorphous heteronuclear complex as a precursor at low temperature , 2000 .

[28]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[29]  P. Davies,et al.  Chemical order in PMN-related relaxors: structure, stability, modification, and impact on properties , 2000 .

[30]  Zhifeng Ren,et al.  Chemical bonding in Tl cuprates studied by x-ray photoemission , 1999 .

[31]  Li Ping,et al.  Structural origin of relaxor perovskites , 1996 .

[32]  C. Chang,et al.  Optical studies of ferroelastic phase transition and domain structures in K3Na(SeO4)2 crystals , 1996 .

[33]  Leslie E. Cross,et al.  Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order , 1990 .

[34]  M. Harmer,et al.  Ordering Structure and Dielectric Properties of Undoped and La/Na‐Doped Pb(Mg1/3Nb2/3)O3 , 1989 .

[35]  G. Thornton,et al.  A neutron diffraction study of LaCoO3 in the temperature range 4.2 , 1986 .

[36]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[37]  Y. Matsumoto,et al.  The Mechanism of Oxygen Reduction at a LaNiO3 Electrode , 1978 .

[38]  Y. Matsumoto,et al.  Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides , 1977 .

[39]  V. Bhide,et al.  Mössbauer Studies of the High-Spin-Low-Spin Equilibria and the Localized-Collective Electron Transition in LaCoO3 , 1972 .

[40]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .