Modelling and Verifying Mobile Systems Using pi-Graphs

This paper introduces the π -graphs, a graphicalmodel of mobile interactions that tries to accommodate theexpressivity of the π -calculus and the intuitiveness ofplace-transition nets. Graph rewriting techniques are used todescribe the operational semantics of π -graphs. Thebijective encoding/decoding of π -graphs allows to mixtransparently graphical and term-based proof techniques, whichleads to a dual characterization of bisimilarity. The mainoriginality of this characterization is the synchronousinterpretation it provides: each graph/term being attached to aclock evolving at the rate of interactions with the environment.This gives new opportunities for the design of efficientverification algorithms for mobile systems.

[1]  Vincent van Oostrom,et al.  Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday , 2005, Processes, Terms and Cycles.

[2]  Fabio Gadducci,et al.  Observing Reductions in Nominal Calculi Via a Graphical Encoding of Processes , 2005, Processes, Terms and Cycles.

[3]  Mogens Nielsen,et al.  Mathematical Foundations of Computer Science 2000 , 2001, Lecture Notes in Computer Science.

[4]  Faron Moller,et al.  The Mobility Workbench - A Tool for the pi-Calculus , 1994, CAV.

[5]  Joachim Parrow Interaction Diagrams , 1995, Nord. J. Comput..

[6]  Frédéric Peschanski,et al.  On Linear Time and Congruence in Channel-passing Calculi , 2004 .

[7]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[8]  Simon L. Peyton Jones,et al.  Type Classes in Haskell , 1994, ESOP.

[9]  Maurizio Gabbrielli,et al.  Comparing Recursion, Replication, and Iteration in Process Calculi , 2004, ICALP.

[10]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .

[11]  Grzegorz Rozenberg,et al.  Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations , 1997 .

[12]  Fabio Gadducci Graph rewriting for the pi-calculus , 2007, Math. Struct. Comput. Sci..

[13]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[14]  Cosimo Laneve,et al.  Solo Diagrams , 2001, TACS.

[15]  Maciej Koutny,et al.  Modelling Mobility in High-level Petri Nets , 2007, Seventh International Conference on Application of Concurrency to System Design (ACSD 2007).

[16]  Robin Milner Pi-Nets: A Graphical Form of pi-Calculus , 1994, ESOP.

[17]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[18]  Marco Pistore,et al.  π-Calculus, structured coalgebras, and minimal HD-automata , 2000 .

[19]  Marco Pistore,et al.  Verifying Mobile Processes in the HAL Environment , 1998, CAV.

[20]  Frédéric Peschanski,et al.  A stackless runtime environment for a Pi-calculus , 2006, VEE '06.

[21]  Marco Pistore,et al.  Checking Bisimilarity for Finitary pi-Calculus , 1995, CONCUR.

[22]  Benjamin C. Pierce,et al.  Theoretical Aspects of Computer Software , 2001, Lecture Notes in Computer Science.

[23]  Marco Pistore,et al.  A Partition Refinement Algorithm for the -Calculus , 2001, Inf. Comput..

[24]  Faron Mollerz,et al.  The Mobility Workbench | a Tool for the -calculus | , 1994 .

[25]  Michael Löwe,et al.  Algebraic Approach to Single-Pushout Graph Transformation , 1993, Theor. Comput. Sci..

[26]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .