Algebraic Multigrid (AMG) for Saddle Point Systems

We introduce an algebraic multigrid method for the solution of matrices with saddle point structure. Such matrices e.g. arise after discretization of a second order partial differential equation (PDE) subject to linear constraints. Algebraic multigrid (AMG) methods provide optimal linear solvers for many applications in science, engineering or economics. The strength of AMG is the automatic construction of a multigrid hierarchy adapted to the linear system to be solved. However, the scope of AMG is mainly limited to symmetric positive definite matrices. An essential feature of these matrices is that they define an inner product and a norm. In AMG, matrixdependent norms play an important role to investigate the action of the smoother, to verify approximation properties for the interpolation operator and to show convergence for the overall multigrid cycle. Furthermore, the non-singularity of all coarse grid operators in a AMG hierarchy is ensured by the positive definiteness of the initial fine level matrix. Saddle point matrices have positive and negative eigenvalues and hence are indefinite. In consequence, if conventional AMG is applied to these matrices, the method will not always converge or may even break down if a singular coarse grid operator is computed. In this thesis, we describe how to circumvent these difficulties and to build a stable saddle point AMG hierarchy. We restrict ourselves to the class of Stokes-like problems, i.e. saddle point matrices which contain a symmetric positive definite submatrix that arises from the discretization of a second order PDE. Our approach is purely algebraic, i.e. it does not require any information not contained in the matrix itself. We identify the variables associated to the positive definite submatrix block (the so-called velocity components) and compute an inexact symmetric positive Schur complement matrix for the remaining degrees of freedom (in the following called pressure components). Then, we employ classical AMG methods for these definite operators individually and obtain an interpolation operator for the velocity components and an interpolation operator for the pressure matrix. The key idea of our method is to not just merge these interpolation matrices into a single prolongation operator for the overall system, but to introduce additional couplings between velocity and pressure. The coarse level operator is computed using this “stabilized” interpolation operator. We present three different interpolation stabilization techniques, for which we show that they resulting coarse grid operator is non-singular. For one of these methods, we can prove two-grid convergence. The numerical results obtained from finite difference and finite element discretizations of saddle point PDEs demonstrate the practical applicability of our approach.

[1]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[2]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[3]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[4]  Michael Griebel,et al.  Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods , 2006, Numer. Linear Algebra Appl..

[5]  Courtenay T. Vaughan,et al.  Zoltan data management services for parallel dynamic applications , 2002, Comput. Sci. Eng..

[6]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[7]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[8]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[9]  Marian Brezina,et al.  Algebraic Multigrid on Unstructured Meshes , 1994 .

[10]  Vipin Kumar,et al.  A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm , 1997, PP.

[11]  Georg Stadler,et al.  Large-scale adaptive mantle convection simulation , 2013 .

[12]  Markus Wabro,et al.  AMGe - Coarsening Strategies and Application to the Oseen Equations , 2005, SIAM J. Sci. Comput..

[13]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[14]  Ulrike Meier Yang,et al.  On the use of relaxation parameters in hybrid smoothers , 2004, Numer. Linear Algebra Appl..

[15]  Klaus Stüben,et al.  Parallel algebraic multigrid based on subdomain blocking , 2001, Parallel Comput..

[16]  Luke N. Olson,et al.  Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods , 2012, SIAM J. Sci. Comput..

[17]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[18]  Michael Griebel,et al.  An Algebraic Multigrid Method for Linear Elasticity , 2003, SIAM J. Sci. Comput..

[19]  Gabriel Wittum,et al.  On the convergence of multi-grid methods with transforming smoothers , 1990 .

[20]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[21]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[22]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..

[23]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[24]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[25]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[26]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..

[27]  David M. Alber Modifying CLJP to select grid hierarchies with lower operator complexities and better performance , 2006, Numer. Linear Algebra Appl..

[28]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[29]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[30]  Ulrike Meier Yang,et al.  Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .

[31]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[32]  G. Wittum Multi-grid methods for stokes and navier-stokes equations , 1989 .

[33]  Walter Zulehner,et al.  A Class of Smoothers for Saddle Point Problems , 2000, Computing.

[34]  Ulrike Meier Yang,et al.  Improving algebraic multigrid interpolation operators for linear elasticity problems , 2010, Numer. Linear Algebra Appl..

[35]  J. Dendy Black box multigrid , 1982 .

[36]  Tanja Clees,et al.  AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation , 2005 .

[37]  S. Oliveira,et al.  Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations , 2004, Numer. Linear Algebra Appl..

[38]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[39]  Samuel Karlin,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[40]  Ulrike Meier Yang,et al.  On long‐range interpolation operators for aggressive coarsening , 2009, Numer. Linear Algebra Appl..

[41]  Dongho Shin,et al.  Inf-sup conditions for finite-difference approximations of the stokes equations , 1997, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[42]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[43]  J. Ruge,et al.  AMG for problems of elasticity , 1986 .

[44]  Michael Griebel,et al.  Numerical Simulation in Fluid Dynamics: A Practical Introduction , 1997 .

[45]  Mark F. Adams,et al.  Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics , 2003, Numer. Linear Algebra Appl..

[46]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[47]  Ray S. Tuminaro,et al.  Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[48]  Yvan Notay,et al.  Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..

[49]  Markus Wabro,et al.  Coupled algebraic multigrid methods for the Oseen problem , 2004 .

[50]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[51]  U. Yang,et al.  Distance-two interpolation for parallel algebraic multigrid , 2007 .

[52]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[53]  W. Hackbusch Iterative Lösung großer schwachbesetzter Gleichungssysteme , 1991 .

[54]  Panayot S. Vassilevski,et al.  Element-Free AMGe: General Algorithms for Computing Interpolation Weights in AMG , 2001, SIAM J. Sci. Comput..

[55]  Irad Yavneh,et al.  Collocation Coarse Approximation in Multigrid , 2009, SIAM J. Sci. Comput..

[56]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[57]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[58]  Joachim Schöberl,et al.  On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.

[59]  D. May,et al.  Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics , 2008 .

[60]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[61]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[62]  Hesham El-Rewini,et al.  Message Passing Interface (MPI) , 2005 .

[63]  Edmond Chow,et al.  Design of the HYPRE preconditioner library , 1998 .

[64]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[65]  Tanja Clees,et al.  Application of single-level, pointwise algebraic, and smoothed aggregation multigrid methods to direct numerical simulations of incompressible turbulent flows , 2007 .

[66]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[67]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[68]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .