An extension of Sharkovsky's theorem to periodic difference equations

We present an extension of Sharkovsky’s Theorem and its converse to periodic difference equations. In addition, we provide a simple method for constructing a p-periodic difference equation having an r-periodic geometric cycle with or without stability properties.

[1]  Shandelle M. Henson,et al.  Global Dynamics of Some Periodically Forced, Monotone Difference Equations , 2001 .

[2]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[3]  Jim M Cushing,et al.  The effect of periodic habitat fluctuations on a nonlinear insect population model , 1997 .

[4]  W. A. Coppel,et al.  Dynamics in One Dimension , 1992 .

[5]  Henri Poincaré,et al.  Sur les Equations Lineaires aux Differentielles Ordinaires et aux Differences Finies , 1885 .

[6]  G. Sell Topological dynamics and ordinary differential equations , 1971 .

[7]  Saber Elaydi,et al.  Periodic difference equations, population biology and the Cushing-Henson conjectures. , 2006, Mathematical biosciences.

[8]  Robert J. Sacker,et al.  Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures , 2005 .

[9]  Bernard D. Coleman,et al.  Nonautonomous logistic equations as models of the adjustment of populations to environmental change , 1979 .

[10]  Saber Elaydi Nonautonomous difference equations: Open problems and conjectures , 2003 .

[11]  R. Kon A Note on Attenuant Cycles of Population Models with Periodic Carrying Capacity , 2004 .

[12]  Kapral,et al.  Bifurcation structure of the nonautonomous quadratic map. , 1985, Physical review. A, General physics.

[13]  S. Elaydi An introduction to difference equations , 1995 .

[14]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[15]  On a Converse of Sharkovsky's Theorem , 1996 .

[16]  H. Waelbroeck,et al.  Discrete Chaos , 1996, chao-dyn/9610005.

[17]  Saber Elaydi,et al.  Global stability of periodic orbits of non-autonomous difference equations and population biology , 2003 .

[18]  Shandelle M. Henson,et al.  Multiple attractors and resonance in periodically forced population models , 2000 .

[19]  V. Kocić,et al.  A note on the nonautonomous Beverton-Holt model , 2005 .

[20]  J. Li,et al.  Periodic solutions of population models in a periodically fluctuating environment. , 1992, Mathematical biosciences.

[21]  R. Sacker,et al.  Skew-Product Dynamical Dystems: Applications to Difference Equations , 2004 .

[22]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[23]  Philip A. Knight,et al.  On the periodically perturbed logistic equation , 1996 .

[24]  J. Roberds,et al.  On the structure of attractors for discrete, periodically forced systems with application to population models , 2001 .

[25]  M E Clark,et al.  Periodic solutions to nonautonomous difference equations. , 1990, Mathematical biosciences.

[26]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[27]  H. M. El-Owaidy,et al.  The necessary and sufficient conditions of existence of periodic solutions of nonautonomous difference equations , 2003, Appl. Math. Comput..

[28]  D. Jillson Insect populations respond to fluctuating environments , 1980, Nature.

[29]  J. Franke,et al.  Attractors for discrete periodic dynamical systems , 2003 .

[30]  Jim M Cushing,et al.  A Periodically Forced Beverton-Holt Equation , 2002 .

[31]  Abdul-Aziz Yakubu,et al.  Multiple attractors via CUSP bifurcation in periodically varying environments , 2005 .