A Dictionary-Based Generalization of Robust PCA With Applications to Target Localization in Hyperspectral Imaging

We consider the decomposition of a data matrix assumed to be a superposition of a low-rank matrix and a component which is sparse in a known dictionary, using a convex demixing method. We consider two sparsity structures for the sparse factor of the dictionary sparse component, namely entry-wise and column-wise sparsity, and provide a unified analysis, encompassing both undercomplete and the overcomplete dictionary cases, to show that the constituent matrices can be successfully recovered under some relatively mild conditions on incoherence, sparsity, and rank. We leverage these results to localize targets of interest in a hyperspectral (HS) image based on their spectral signature(s) using the a priori known characteristic spectral responses of the target. We corroborate our theoretical results and analyze target localization performance of our approach via experimental evaluations and comparisons to related techniques.

[1]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[2]  Paris V. Giampouras,et al.  Simultaneously Sparse and Low-Rank Abundance Matrix Estimation for Hyperspectral Image Unmixing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[3]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[4]  Jarvis D. Haupt,et al.  Target-based hyperspectral demixing via generalized robust PCA , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[5]  Jarvis D. Haupt,et al.  Outlier identification via randomized adaptive compressive sampling , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Jarvis D. Haupt,et al.  NOODL: Provable Online Dictionary Learning and Sparse Coding , 2019, ICLR.

[7]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[8]  Ali Jalali,et al.  Low-Rank Matrix Recovery From Errors and Erasures , 2013, IEEE Transactions on Information Theory.

[9]  Mark W. Schmidt,et al.  Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition , 2016, ECML/PKDD.

[10]  Paris Smaragdis,et al.  Singing-voice separation from monaural recordings using robust principal component analysis , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[12]  Yangyang Xu,et al.  Robust PCA via Dictionary Based Outlier Pursuit , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[13]  Jarvis D. Haupt,et al.  A Dictionary-Based Generalization of Robust PCA Part I: Study of Theoretical Properties , 2019, ArXiv.

[14]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[15]  Yasuyuki Matsushita,et al.  High-resolution hyperspectral imaging via matrix factorization , 2011, CVPR 2011.

[16]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[17]  Bosoon Park,et al.  Hyperspectral Imaging Technology in Food and Agriculture , 2015 .

[18]  Jarvis D. Haupt,et al.  Semi-blind source separation via sparse representations and online dictionary learning , 2012, 2013 Asilomar Conference on Signals, Systems and Computers.

[19]  M. F. Baumgardner,et al.  220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3 , 2015 .

[20]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[21]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[22]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[23]  Mark Crovella,et al.  Diagnosing network-wide traffic anomalies , 2004, SIGCOMM '04.

[24]  Gilad Lerman,et al.  An Overview of Robust Subspace Recovery , 2018, Proceedings of the IEEE.

[25]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[26]  Xingguo Li,et al.  An Efficient Dictionary Based Robust PCA via Sketching , 2017 .

[27]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[28]  Thomas H. Parker,et al.  What is π , 1991 .

[29]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[30]  Bhaskar Mehta,et al.  Attack resistant collaborative filtering , 2008, SIGIR '08.

[31]  Jarvis D. Haupt,et al.  A dictionary based generalization of robust PCA , 2016, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[32]  Guillermo Sapiro,et al.  Real-time Online Singing Voice Separation from Monaural Recordings Using Robust Low-rank Modeling , 2012, ISMIR.

[33]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[34]  Michael Elad,et al.  K-SVD : DESIGN OF DICTIONARIES FOR SPARSE REPRESENTATION , 2005 .

[35]  J. Bobin,et al.  Sparsity constraints for hyperspectral data analysis: linear mixture model and beyond , 2009, Optical Engineering + Applications.

[36]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[37]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[38]  Xin Yuan,et al.  Compressive Hyperspectral Imaging With Side Information , 2015, IEEE Journal of Selected Topics in Signal Processing.

[39]  George Atia,et al.  Randomized Robust Subspace Recovery and Outlier Detection for High Dimensional Data Matrices , 2015, IEEE Transactions on Signal Processing.

[40]  J. Bobin,et al.  Morphological component analysis , 2005, SPIE Optics + Photonics.

[41]  C. Heil WHAT IS... a Frame , 2013 .

[42]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[43]  Jarvis D. Haupt,et al.  Identifying Outliers in Large Matrices via Randomized Adaptive Compressive Sampling , 2014, IEEE Transactions on Signal Processing.

[44]  Guillermo Sapiro,et al.  Dictionary Learning for Noisy and Incomplete Hyperspectral Images , 2012, SIAM J. Imaging Sci..

[45]  Nasser M. Nasrabadi,et al.  Hyperspectral Target Detection : An Overview of Current and Future Challenges , 2014, IEEE Signal Processing Magazine.

[46]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[47]  Jarvis D. Haupt,et al.  A refined analysis for the sample complexity of adaptive compressive outlier sensing , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[48]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[49]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[50]  Morteza Mardani,et al.  Recovery of Low-Rank Plus Compressed Sparse Matrices With Application to Unveiling Traffic Anomalies , 2012, IEEE Transactions on Information Theory.

[51]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[52]  M. Borengasser,et al.  Hyperspectral Remote Sensing: Principles and Applications , 2007 .

[53]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Bo Du,et al.  Target Dictionary Construction-Based Sparse Representation Hyperspectral Target Detection Methods , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[55]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[56]  John B. Greer,et al.  Sparse Demixing of Hyperspectral Images , 2012, IEEE Transactions on Image Processing.

[57]  Jarvis D. Haupt,et al.  Locating salient group-structured image features via adaptive compressive sensing , 2015, 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[58]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[59]  Qian Du,et al.  A survey on representation-based classification and detection in hyperspectral remote sensing imagery , 2016, Pattern Recognit. Lett..

[60]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[61]  Pierre Vandergheynst,et al.  Distributed compressed sensing of Hyperspectral images via blind source separation , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[62]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[63]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[64]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[65]  Jean-Luc Starck,et al.  Dictionary learning with spatio-spectral sparsity constraints , 2009 .

[66]  Yoshua Bengio,et al.  Tackling Climate Change with Machine Learning , 2019, ACM Comput. Surv..

[67]  Nanning Zheng,et al.  Learning to Detect A Salient Object , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[68]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[69]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[70]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[71]  S. Macenka,et al.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1988 .

[72]  Chunhui Zhao,et al.  Hyperspectral anomaly detection based on spectral–spatial background joint sparse representation , 2017 .

[73]  John Wright,et al.  Decomposing background topics from keywords by principal component pursuit , 2010, CIKM.

[74]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[75]  George Atia,et al.  Randomized Robust Subspace Recovery for High Dimensional Data Matrices , 2015, ArXiv.