Wavelet variance components in image space for spatiotemporal neuroimaging data

Neuroimaging studies place great emphasis on not only the estimation but also the standard error estimates of underlying parameters derived from a temporal model. This allows inferences to be made about the signal estimates and resulting conclusions to be drawn about the underlying data. It can often be advantageous to interrogate temporal models after spatial transformation of the data into the wavelet domain. Wavelet bases provide a multiresolution decomposition of the spatial data dimension and an ensuing reduction in spatial correlation. However, widespread acceptance of these wavelet techniques has been hampered by the limited ability to reconstruct both parametric and error estimates into the image domain after analysis of temporal models in the wavelet domain. This paper introduces a derivation and a fast implementation of a method for the calculation of the variance of the parametric images obtained from wavelet filters. The technique is proposed for a class of estimators that have been shown to be useful in neuroimaging studies. The techniques are demonstrated for both functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) data sets.

[1]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[2]  Thierry Blu,et al.  Wavelet-based fMRI statistical analysis and spatial interpretation: a unifying approach , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[3]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[4]  Gabriele Lohmann,et al.  Wavelet statistics of functional MRI data and the general linear model , 2003, Journal of magnetic resonance imaging : JMRI.

[5]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[6]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[7]  F E Turkheimer,et al.  Multiresolution Analysis of Emission Tomography Images in the Wavelet Domain , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[9]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[10]  Karl J. Friston,et al.  To Smooth or Not to Smooth? Bias and Efficiency in fMRI Time-Series Analysis , 2000, NeuroImage.

[11]  F E Turkheimer,et al.  Statistical Modeling of Positron Emission Tomography Images in Wavelet Space , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  E. Bullmore,et al.  Wavelets and statistical analysis of functional magnetic resonance images of the human brain , 2003, Statistical methods in medical research.

[13]  F E Turkheimer,et al.  Modeling Dynamic PET-SPECT Studies in the Wavelet Domain , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  S. Mallat A wavelet tour of signal processing , 1998 .

[15]  M. Brammer,et al.  Multiresolution analysis in fMRI: Sensitivity and specificity in the detection of brain activation , 2001, Human brain mapping.

[16]  Bruce Pike,et al.  Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. , 2002, Journal of neurophysiology.

[17]  K. Worsley,et al.  A Statistical Method for the Analysis of Positron Emission Tomography Neuroreceptor Ligand Data , 2000, NeuroImage.

[18]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[19]  G. Rees Statistical Parametric Mapping , 2004, Practical Neurology.

[20]  Michael Unser,et al.  Statistical analysis of functional MRI data in the wavelet domain , 1998, IEEE Transactions on Medical Imaging.

[21]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[22]  Alan C. Evans,et al.  Positron Emission Tomography Partial Volume Correction: Estimation and Algorithms , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  Peter Herscovitch,et al.  An approximation formula for the variance of PET region-of-interest values , 1993, IEEE Trans. Medical Imaging.

[24]  B Walder,et al.  Similarity and Robustness of PET and SPECT Binding Parameters for Benzodiazepine Receptors , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  Federico E. Turkheimer,et al.  On the logic of hypothesis testing in functional imaging , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[28]  Karl J. Friston,et al.  CHAPTER 2 – Statistical parametric mapping , 2007 .

[29]  E. Hoffman,et al.  TOMOGRAPHIC MEASUREMENT OF LOCAL CEREBRAL GLUCOSE METABOLIC RATE IN HUMANS WITH (F‐18)2‐FLUORO-2‐DEOXY-D‐GLUCOSE: VALIDATION OF METHOD , 1980, Annals of neurology.

[30]  Chulhee Lee,et al.  Registration and statistical analysis of PET images using the wavelet transform , 1995 .

[31]  Cyril Riddell,et al.  A linear wavelet filter for parametric imaging with dynamic PET , 2003, IEEE Transactions on Medical Imaging.

[32]  Lars Farde,et al.  Wavelet-Aided Parametric Mapping of Cerebral Dopamine D2 Receptors Using the High Affinity PET Radioligand [11C]FLB 457 , 2002, NeuroImage.

[33]  Dimitri Van De Ville,et al.  Integrated wavelet processing and spatial statistical testing of fMRI data , 2004, NeuroImage.

[34]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[35]  Christine Fennema-Notestine,et al.  More “mapping” in brain mapping: Statistical comparison of effects , 2003, Human brain mapping.

[36]  Robert D. Nowak,et al.  Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..

[37]  Todd R. Ogden,et al.  Wavelet Methods for Time Series Analysis , 2002 .

[38]  Dimitri Van De Ville,et al.  Wavelets versus resels in the context of fMRI: establishing the link with SPM , 2003, SPIE Optics + Photonics.

[39]  Federico E. Turkheimer,et al.  Wavelet variance components in image space for spatio-temporal neuroimaging data , 2003, SPIE Optics + Photonics.

[40]  I. Daubechies Ten Lectures on Wavelets , 1992 .