Wireless virtual reality (VR) is increasingly used in industrial Internet of Things (IIoTs). However, ultra-high viewport rendering demands and excessive terminal energy consumption restrict the application of wireless VR. Pervasive edge computing emerges as a promising method for wireless VR. In this article, we propose an energy-aware resource management scheme for wireless-VR-supported IIoTs. To reduce the energy consumption of VR equipments (VEs) while ensuring a smooth immersive VR experience, we formulate the viewport rendering offloading, computing, and spectrum resource allocation to be a joint optimization problem, considering content correlation between VEs, fluctuating channel conditions, and VR quality of experience. By applying dual approximation, the original problem is transformed to be a Markov decision process and an reinforcement learning (RL)-based online learning algorithm is designed to find the optimal policy. To improve the learning efficiency, the quantum parallelism is integrated into the RL to overcome “curse of dimensionality”. In the simulations, the convergence rate and the performance in terms of energy consumption and stalling rate are evaluated. Simulation results demonstrate the effectiveness of the proposed scheme.