The approximation of almost time- and band-limited functions by their expansion in some orthogonal polynomials bases

Abstract The aim of this paper is to investigate the quality of approximation of almost time- and almost band-limited functions by its expansion in two classical orthogonal polynomials bases: the Hermite basis and the ultraspherical polynomials bases (which include Legendre and Chebyshev bases as particular cases). As a corollary, this allows us to obtain the quality of approximation in the L 2 -Sobolev space by these orthogonal polynomials bases. Also, we obtain the rate of convergence of the Legendre series expansion of the prolate spheroidal wave functions.

[1]  On the Development of Arbitrary Functions in Series of Hermite's and Laguerre's Polynomials , 1926 .

[2]  K. Grōchenig,et al.  On accumulated spectrograms , 2014, 1404.7713.

[3]  Abderrazek Karoui,et al.  Uniform bounds of prolate spheroidal wave functions and eigenvalues decay , 2014 .

[4]  Diego Dominici Asymptotic analysis of the Hermite polynomials from their differential–difference equation , 2006 .

[5]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[6]  H. Widom Asymptotic behavior of the eigenvalues of certain integral equations. II , 1964 .

[7]  Abderrazek Karoui,et al.  Spectral Decay of Time and Frequency Limiting Operator , 2015 .

[8]  Measures of localization and quantitative Nyquist densities , 2014, 1411.0953.

[9]  William J. Thompson,et al.  Spheroidal wave functions , 1999, Comput. Sci. Eng..

[10]  V. Rokhlin,et al.  Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .

[11]  L p-norms of Hermite polynomials and an extremization problem on Wiener chaos , .

[12]  J. Lakey,et al.  Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications , 2011 .

[13]  H. Alzer Inequalities for the gamma function , 1999 .

[14]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[15]  Christopher J. BISHOPAbstra,et al.  Orthogonal Functions , 2022 .

[16]  Mei Ling Huang,et al.  ERROR ESTIMATES FOR DOMINICI’S HERMITE FUNCTION ASYMPTOTIC FORMULA AND SOME APPLICATIONS , 2009, The ANZIAM Journal.

[17]  A. Powell,et al.  Uncertainty principles for orthonormal sequences , 2006, math/0606395.

[18]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[19]  Lars Larsson-Cohn,et al.  Lp-Norms and Information Entropies of Charlier Polynomials , 2002, J. Approx. Theory.

[20]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[21]  Herbert Koch,et al.  L^p eigenfunction bounds for the Hermite operator , 2004 .

[22]  Leon M. Hall,et al.  Special Functions , 1998 .

[23]  Lars Larsson-Cohn,et al.  Lp-norms of Hermite polynomials and an extremal problem on Wiener chaos , 2002 .

[24]  H. Widom Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .

[25]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[26]  Philippe Jaming Uncertainty principles for orthonormal bases , 2006, math/0606396.

[27]  P. Deift Universality for mathematical and physical systems , 2006, math-ph/0603038.

[28]  Vladimir Rokhlin,et al.  On the evaluation of prolate spheroidal wave functions and associated quadrature rules , 2013, 1301.1707.

[29]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[30]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[31]  J. Boyd Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms , 2004 .

[32]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[33]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[34]  Le-Wei Li,et al.  Spheroidal Wave Functions in Electromagnetic Theory , 2001 .

[35]  Wolfgang Erb,et al.  An orthogonal polynomial analogue of the Landau-Pollak-Slepian time-frequency analysis , 2011, J. Approx. Theory.