Semi-uniform ergodic theorems and applications to forced systems
暂无分享,去创建一个
Rob Sturman | J. Stark | R. Sturman | J Stark
[1] H. Furstenberg,et al. Products of Random Matrices , 1960 .
[2] J. Kingman,et al. The Ergodic Theory of Subadditive Stochastic Processes , 1968 .
[3] J. Yorke,et al. On the existence of invariant measures for piecewise monotonic transformations , 1973 .
[4] Ja B Pesin. FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO CHARACTERISTIC EXPONENTS , 1976 .
[5] Tien-Yien Li. Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .
[6] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[7] Subadditive mean ergodic theorems , 1981, Ergodic Theory and Dynamical Systems.
[8] Franz Hofbauer,et al. Ergodic properties of invariant measures for piecewise monotonic transformations , 1982 .
[9] Gerhard Keller,et al. Stochastic stability in some chaotic dynamical systems , 1982 .
[10] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[11] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[12] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[13] George R. Sell,et al. Ergodic properties of linear dynamical systems , 1987 .
[14] Abraham Boyarsky,et al. Compactness of Invariant Densities for Families of Expanding, Piecewise Monotonic Transformations , 1989, Canadian Journal of Mathematics.
[15] M. L. Blank,et al. Chaotic Mappings and Stochastic Markov Chains , 1992 .
[16] Lai-Sang Young,et al. On the spectra of randomly perturbed expanding maps , 1993 .
[17] E. Ott,et al. Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .
[18] Boris Hasselblatt,et al. Introduction to the Modern Theory of Dynamical Systems: LOCAL HYPERBOLIC THEORY AND ITS APPLICATIONS , 1995 .
[19] Jürgen Kurths,et al. Strange non-chaotic attractor in a quasiperiodically forced circle map , 1995 .
[20] Ott,et al. Optimal periodic orbits of chaotic systems. , 1996, Physical review letters.
[21] M. Davies,et al. The existence of inertial functions in skew product systems , 1996 .
[22] Gerhard Keller. A note on strange nonchaotic attractors , 1996 .
[23] Ott,et al. Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[24] Mike E. Davies,et al. Linear Recursive Filters and Nonlinear Dynamics , 1996 .
[25] I. Stewart,et al. From attractor to chaotic saddle: a tale of transverse instability , 1996 .
[26] J. Stark. Invariant graphs for forced systems , 1997 .
[27] M. Denker,et al. The Poincaré series of $\mathbb C\setminus\mathbb Z$ , 1999, Ergodic Theory and Dynamical Systems.
[28] Optimal orbits of hyperbolic systems , 1999 .