Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes.

We report the synthesis of highly flexible and mechanically robust hybrid silica nanowires (NWs) which can be used as novel building blocks to construct superhydrophobic functional materials with three-dimensional macroporous networks. The hybrid silica NWs, with an average diameter of 80 nm and tunable length of up to 12 μm, are prepared by anisotropic deposition of the hydrolyzed tetraethylorthosilicate in water/n-pentanol emulsions. A mechanistic investigation reveals that the trimethoxy(octadecyl)silane introduced to the water-oil interface in the synthesis plays key roles in stabilizing the water droplets to sub-100 nm and also growing a layer of octadecyl groups on the NW surface. This work opens a solution-based route for the one-pot preparation of monodisperse, hydrophobic silica NWs and represents an important step toward the bottom-up construction of 3D superhydrophobic materials and macroporous membranes.

[1]  Katsuhiko Ariga,et al.  Templated Synthesis for Nanoarchitectured Porous Materials , 2015 .

[2]  Ying-Wei Yang,et al.  Molecular and supramolecular switches on mesoporous silica nanoparticles. , 2015, Chemical Society reviews.

[3]  Terence G. Henares,et al.  Paper-based inkjet-printed microfluidic analytical devices. , 2015, Angewandte Chemie.

[4]  Kentaro Yamada,et al.  Papierbasierte tintenstrahlgedruckte Mikrofluidiksysteme für die Analytik , 2015 .

[5]  Ye Tian,et al.  Bioinspired super-wettability from fundamental research to practical applications. , 2015, Angewandte Chemie.

[6]  Lei Jiang,et al.  Biologisch inspirierte Superbenetzbarkeit – von der Grundlagenforschung zur praktischen Anwendung , 2015 .

[7]  John Wang,et al.  Silica-based nanocapsules: synthesis, structure control and biomedical applications. , 2015, Chemical Society reviews.

[8]  X. Su,et al.  Shape-tunable hollow silica nanomaterials based on a soft-templating method and their application as a drug carrier. , 2014, ACS applied materials & interfaces.

[9]  A. Wise,et al.  Mesoporous silica supraparticles for sustained inner-ear drug delivery. , 2014, Small.

[10]  Jeong-Hoon Kim,et al.  Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems. , 2014, Nano letters.

[11]  B. Shirinzadeh,et al.  A wearable and highly sensitive pressure sensor with ultrathin gold nanowires , 2014, Nature Communications.

[12]  M. Xue,et al.  Mechanically durable superhydrophobic surfaces prepared by abrading , 2013 .

[13]  Katsuhiko Ariga,et al.  Bioactive flake-shell capsules: soft silica nanoparticles for efficient enzyme immobilization. , 2013, Journal of materials chemistry. B.

[14]  I. Parkin,et al.  Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation , 2013 .

[15]  T. Darmanin,et al.  Superhydrophobic Surfaces by Electrochemical Processes , 2013, Advanced materials.

[16]  Katsuhiko Ariga,et al.  Flake-shell capsules: adjustable inorganic structures. , 2012, Small.

[17]  Shu-Hong Yu,et al.  Macroscopic-scale assembled nanowire thin films and their functionalities. , 2012, Chemical reviews.

[18]  Julian R. Jones,et al.  Electrospun silica/PLLA hybrid materials for skeletal regeneration , 2011 .

[19]  Mark T. Tuominen,et al.  Hierarchical Superhydrophobic Surfaces Fabricated by Dual‐Scale Electron‐Beam‐Lithography with Well‐Ordered Secondary Nanostructures , 2011 .

[20]  Xinsheng Peng,et al.  Green‐Chemical Synthesis of Ultrathin β‐MnOOH Nanofibers for Separation Membranes , 2011 .

[21]  T. Bein,et al.  Mesoporous Structures Confined in Anodic Alumina Membranes , 2011, Advanced materials.

[22]  P. Niewiarowski,et al.  Histochemical and ultrastructural analyses of adhesive setae of lizards indicate that they contain lipids in addition to keratins , 2011, Journal of morphology.

[23]  Shekhar Bhansali,et al.  Vapor-liquid-solid grown silica nanowire based electrochemical glucose biosensor. , 2011, The Analyst.

[24]  Shuhong Yu,et al.  Carbonaceous Nanofiber Membranes for Selective Filtration and Separation of Nanoparticles , 2010, Advanced materials.

[25]  Bai Yang,et al.  Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography , 2010 .

[26]  Yunfeng Shi Size-independent shear band formation in amorphous nanowires made from simulated casting , 2010, 1002.2799.

[27]  Xiabin Jing,et al.  Preparation, Bioactivity, and Drug Release of Hierarchical Nanoporous Bioactive Glass Ultrathin Fibers , 2010, Advanced materials.

[28]  X. Bai,et al.  Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. , 2010, ACS nano.

[29]  Sang-won Jee,et al.  Mechanical Properties of Silicon Nanowires , 2009, Nanoscale research letters.

[30]  Yanjing Li,et al.  Adsorption and catalytic activity of Porcine pancreatic lipase on rod-like SBA-15 mesoporous material , 2009 .

[31]  Gilberto Brambilla,et al.  The ultimate strength of glass silica nanowires. , 2009, Nano letters.

[32]  Nikolay Petkov,et al.  Vertical columnar block-copolymer-templated mesoporous silica via confined phase transformation. , 2008, Journal of the American Chemical Society.

[33]  Xi Zhang,et al.  Superhydrophobic surfaces: from structural control to functional application , 2008 .

[34]  Xinsheng Peng,et al.  General method for ultrathin free-standing films of nanofibrous composite materials. , 2007, Journal of the American Chemical Society.

[35]  S. Bell,et al.  Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. , 2007, Angewandte Chemie.

[36]  Lei Zhai,et al.  Decorated Electrospun Fibers Exhibiting Superhydrophobicity , 2007 .

[37]  F. Hoffmann,et al.  Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis , 2006 .

[38]  M. Fröba,et al.  Silica-based mesoporous organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[39]  A. Yu,et al.  Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. , 2005, Angewandte Chemie.

[40]  E. Şimşek,et al.  Tunable, superhydrophobically stable polymeric surfaces by electrospinning. , 2004, Angewandte Chemie.

[41]  F. Caruso,et al.  Macroporous Zeolitic Membrane Bioreactors , 2004 .

[42]  Jin Zhai,et al.  A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. , 2004, Angewandte Chemie.

[43]  Xiaoyuan Li,et al.  Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. , 2004, Journal of the American Chemical Society.

[44]  Chung-Yuan Mou,et al.  Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography , 2004 .

[45]  Gareth H. McKinley,et al.  Superhydrophobic Carbon Nanotube Forests , 2003 .

[46]  Zhenzhong Yang,et al.  Template synthesis of uniform 1D mesostructured silica materials and their arrays in anodic alumina membranes. , 2003, Angewandte Chemie.

[47]  Yanlin Song,et al.  Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. , 2002, Angewandte Chemie.

[48]  Zu Rong Dai,et al.  Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. , 2002, Journal of the American Chemical Society.

[49]  Younan Xia,et al.  Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. , 2001, Journal of the American Chemical Society.

[50]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[51]  Baughman,et al.  Carbon structures with three-dimensional periodicity at optical wavelengths , 1998, Science.

[52]  Jun Hyuk Moon,et al.  Chemical aspects of three-dimensional photonic crystals. , 2010, Chemical reviews.

[53]  R. Ruel,et al.  Template-directed colloidal crystallization , 1997, Nature.