A Statistical Approach for Text Processing in Virtual Humans

Abstract : We describe a text classification approach based on statistical language modeling. We show how this approach can be used for several natural language processing tasks in a virtual human system. Specifically, we show it can be applied to language understanding, language generation, and character response selection tasks. We illustrate these applications with some experimental results.

[1]  Lalit R. Bahl,et al.  A Maximum Likelihood Approach to Continuous Speech Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Daniel Jurafsky,et al.  Automatic Labeling of Semantic Roles , 2002, CL.

[3]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[4]  Anton Leuski,et al.  Building Effective Question Answering Characters , 2006, SIGDIAL Workshop.

[5]  Stacy Marsella,et al.  Virtual Humans for non-team interaction training , 2005, AAMAS 2005.

[6]  David R. Traum,et al.  A Common Ground for Virtual Humans: Using an Ontology in a Natural Language Oriented Virtual Human Architecture , 2008, LREC.

[7]  Mitchell P. Marcus,et al.  Adding Semantic Annotation to the Penn TreeBank , 1998 .

[8]  Eugene Charniak,et al.  Statistical Parsing with a Context-Free Grammar and Word Statistics , 1997, AAAI/IAAI.

[9]  David DeVault,et al.  Making Grammar-Based Generation Easier to Deploy in Dialogue Systems , 2008, SIGDIAL Workshop.

[10]  W. Bruce Croft,et al.  Text Segmentation by Topic , 1997, ECDL.

[11]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[12]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[13]  Anton Leuski,et al.  How to talk to a hologram , 2006, IUI '06.

[14]  Gregory Grefenstette,et al.  Cross-Language Information Retrieval , 1998, The Springer International Series on Information Retrieval.

[15]  Namhee Kwon,et al.  Maximum Entropy Models for FrameNet Classification , 2003, EMNLP.

[16]  Michael Collins,et al.  Three Generative, Lexicalised Models for Statistical Parsing , 1997, ACL.

[17]  Victor Lavrenko,et al.  A Generative Theory of Relevance , 2008, The Information Retrieval Series.