Learned Lexicon-Driven Interactive Video Retrieval

We combine in this paper automatic learning of a large lexicon of semantic concepts with traditional video retrieval methods into a novel approach to narrow the semantic gap. The core of the proposed solution is formed by the automatic detection of an unprecedented lexicon of 101 concepts. From there, we explore the combination of query-by-concept, query-by-example, query-by-keyword, and user interaction into the MediaMill semantic video search engine. We evaluate the search engine against the 2005 NIST TRECVID video retrieval benchmark, using an international broadcast news archive of 85 hours. Top ranking results show that the lexicon-driven search engine is highly effective for interactive video retrieval.

[1]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[2]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[3]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[4]  Jong-Hak Lee,et al.  Analyses of multiple evidence combination , 1997, SIGIR '97.

[5]  Shih-Fu Chang,et al.  A fully automated content-based video search engine supporting spatiotemporal queries , 1998, IEEE Trans. Circuits Syst. Video Technol..

[6]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[7]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[9]  Milind R. Naphade,et al.  A probabilistic framework for semantic indexing and retrieval in video , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[10]  Milind R. Naphade,et al.  A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..

[11]  Wei-Ying Ma,et al.  Image and Video Retrieval , 2003, Lecture Notes in Computer Science.

[12]  Timo Ojala,et al.  Analysing the performance of visual, concept and text features in content-based video retrieval , 2004, MIR '04.

[13]  Christian Petersohn Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.

[14]  Michael G. Christel,et al.  Exploiting multiple modalities for interactive video retrieval , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  John Adcock,et al.  Interactive Video Search Using Multilevel Indexing , 2005, CIVR.

[16]  Alan F. Smeaton,et al.  Large Scale Evaluations of Multimedia Information Retrieval: The TRECVid Experience , 2005, CIVR.

[17]  Marcel Worring,et al.  The Semantic Pathfinder: Using an Authoring Metaphor for Generic Multimedia Indexing , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.