Current sheets in the Discontinuous Galerkin Time-Domain method: an application to graphene

We describe the treatment of thin conductive sheets within the Discontinuous Galerkin Time-Domain (DGTD) method for solving the Maxwell equations and apply this approach to the efficient computation of the optical properties of graphene-based systems. In particular, we show that a thin conductive sheet can be handled by incorporating the associated jump conditions of the electromagnetic field into the numerical flux of the DGTD approach. This results in a flexible and efficient numerical scheme that can be applied to a number of systems. Specifically, we show how to treat individual graphene sheets on substrates as well as finite stacks of alternating graphene and dielectric layers by modeling the dispersive and dissipative properties of graphene via a two-term critical-point model for its electrostatically doped conductivity.

[1]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[2]  N. Kantartzis,et al.  Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes , 2012, IEEE Transactions on Magnetics.

[3]  Kurt Busch,et al.  Simple magneto-optic transition metal models for time-domain simulations. , 2013, Optics express.

[4]  Ivan Mukhin,et al.  Hyperbolic metamaterials based on multilayer graphene structures , 2012, 1211.5117.

[5]  M. König,et al.  Discontinuous Galerkin methods in nanophotonics , 2011 .

[6]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[7]  S. Adam,et al.  Origin of band gaps in graphene on hexagonal boron nitride , 2014, Nature Communications.

[8]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[9]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[10]  John T. Katsikadelis,et al.  Boundary Elements: Theory and Applications , 2002 .

[11]  Kurt Busch,et al.  Efficient low-storage Runge-Kutta schemes with optimized stability regions , 2012, J. Comput. Phys..

[12]  A. Vial Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method , 2007 .

[13]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[14]  A. Lavrinenko,et al.  Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. , 2013, Optics express.

[15]  Alexander V. Kildishev,et al.  Efficient time-domain model of the graphene dielectric function , 2013, Optics & Photonics - NanoScience + Engineering.

[16]  A. Kuzmenko,et al.  Universal optical conductance of graphite. , 2007, Physical review letters.

[17]  N. Peres,et al.  Optical conductivity of graphene in the visible region of the spectrum , 2008, 0803.1802.

[18]  Kurt Busch,et al.  Efficient multiple time-stepping algorithms of higher order , 2015, J. Comput. Phys..

[19]  P. Berini Long-range surface plasmon polaritons , 2009 .

[20]  L. Novotný,et al.  Antennas for light , 2011 .

[21]  Vijaya Shankar,et al.  Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .

[22]  A. Kildishev,et al.  Optical Dispersion Models for Time-Domain Modeling of Metal-Dielectric Nanostructures , 2011, IEEE Transactions on Magnetics.

[23]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[24]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[25]  M. Wegener,et al.  Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas. , 2012, Physical review letters.

[26]  John E. Sipe,et al.  Analysis of second-harmonic generation at metal surfaces , 1980 .

[27]  T. Stauber Plasmonics in Dirac systems: from graphene to topological insulators , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .