The geometry of Pareto efficiency over cones

The existence of equivalent scalar problems for Pareto optimizations over arbitrary cones is studied in locally convex spaces with emphasis on the geometric relationships between various cones. Applications to non-linear programming and convex programming are given.

[1]  D. Blackwell,et al.  5. Admissible Points of Convex Sets , 1953 .

[2]  V. Klee Separation properties of convex cones , 1955 .

[3]  A. Peressini Ordered topological vector spaces , 1967 .

[4]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[5]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[6]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[7]  P. Laurent Approximation et optimisation , 1972 .

[8]  Sanjo Zlobec,et al.  Various definitions of the derivative in mathematical programming , 1974, Math. Program..

[9]  Heinz Isermann,et al.  Technical Note - Proper Efficiency and the Linear Vector Maximum Problem , 1974, Oper. Res..

[10]  M. Nashed,et al.  On the cones of tangents with applications to mathematical programming , 1974 .

[11]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[12]  Werner Oettli,et al.  The theorem of the alternative, the key-theorem, and the vector-maximum problem , 1975, Math. Program..

[13]  J. Borwein,et al.  Tangent Cones and Convexity , 1976, Canadian Mathematical Bulletin.

[14]  Über lösbarkeitseigenschaften homogener linearer ungleiehungen in halbgeordneten räumen , 1976 .

[15]  J. Borwein Proper Efficient Points for Maximizations with Respect to Cones , 1977 .

[16]  Vector-valued inverse programming. , 1977 .

[17]  J. Borwein,et al.  Weak tangent cones and optimization in a Banach space | NOVA. The University of Newcastle's Digital Repository , 1978 .

[18]  Ekkehard W. Sachs,et al.  Differentiability in optimization theory 1 , 1978 .

[19]  R. Hartley On Cone-Efficiency, Cone-Convexity and Cone-Compactness , 1978 .

[20]  Y. Sawaragi,et al.  Duality theory in multiobjective programming , 1979 .

[21]  G. R. Bitran,et al.  The structure of admissible points with respect to cone dominance , 1979 .